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We analyze, via Imry-Ma scaling arguments, the strong disorder phases that exist in low dimensions at all
temperatures for directed polymers and interfaces in random media. For the uncorrelated Gaussian disorder, we
obtain that the optimal strategy for the polymer in dimension 1+d with 0,d,2 involves at the same time(i)
a confinement in a favorable tube of radiusRS,LnS with nS=1/s4−dd,1/2 (ii ) a superdiffusive behavior
R,Ln with n=s3−dd / s4−dd.1/2 for the wandering of the best favorable tube available. The corresponding
free energy then scales asF,Lv with v=2n−1 and the left tail of the probability distribution involves a
stretched exponential of exponenth=s4−dd /2. These results generalize the well known exact exponentsn

=2/3, v=1/3, andh=3/2 in d=1, where the subleading transverse lengthRS,L1/3 is known as the typical
distance between two replicas in the Bethe ansatz wave function. We then extend our approach to correlated
disorder in transverse directions with exponenta and/or to manifolds in dimensionD+d=dt with 0,D,2.
The strategy of being both confined and superdiffusive is still optimal for decaying correlationssa,0d,
whereas it is not for growing correlationssa.0d. In particular, for an interface of dimensionsdt−1d in a space
of total dimension 5/3,dt,3 with random-bond disorder, our approach yields the confinement exponent
nS=sdt−1ds3−dtd / s5dt−7d. Finally, we study the exponents in the presence of an algebraic tail 1 /V1+m in the
disorder distribution, and obtain various regimes in thesm ,dd plane.
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I. INTRODUCTION

Directed polymers in random media have attracted a lot of
interest for many years, either as interesting disordered mod-
els or in relation with stochastic growth models[1]. For
polymers in dimension 1+d described in the continuum limit
by the partition function

Z =E DrWssde−e0
L dssdrW/dsd2−be0

L dsVfs,rWssdg s1d

with an uncorrelated Gaussian random potential

Vss,rWdVss8,rW8d = dss− s8dddsrW − rW8d, s2d

the phase diagram is the following[1]: in dimensiond.2,
there exists a phase transition between a free phase at high
temperature[2,3], and a pinned phase at low temperature:
this phase transition has been studied numerically ind=3
[4], exactly on a Cayley tree[5] and on hierarchical lattice
[6]. On the contrary, in dimensiond,2, there is no free
phase, i.e., any initial disorder drives the polymer into a
strong disorder phase. The marginal dimensiond=2 has been
controversial and deserves a special discussion[1]. A strong
disorder phase is characterized in particular by two expo-
nentsv andn for the free energyF and the transverse length
scaleR:

FsLd , Lv, s3d

RsLd , Ln s4d

with the expected scaling relationv=2n−1 [7]. In 1+1,
these exponentsv andn are exactly known to bev=1/3 and
n=2/3, because ind=1, some “miracles” happen in various

methods: via the mapping towards a damped Burgers equa-
tion with random forcing, there exists an exact steady-state
distribution that fixes the values of the exponents[8]; within
the replica framework, there exists exact Bethe ansatz solu-
tions, that have been studied either in unbounded space
[9,10], or in bounded space[11]; there exists an exact com-
binatorial solution at zero temperature[12], as well as other
exact results via the correspondence with stochastic growth
models [13] in the same Kardar-Parisi-Zhang universality
class. So there are plenty of reasons why the exponents are
exactly 1/3 and 2/3 ind=1. However, various questions are
still open or under debate[1], concerning the generalizations
of these exponents in various ways, namely:(i) in other
transverse dimensionsd; (ii ) in the presence of transverse
correlations, or time correlations;(iii ) for manifolds and in-
terfaces of higher internal dimensionsD; (iv) for various
initial disorder distributions, presenting for instance alge-
braic tails.

In this paper, our aim is to present Imry-Ma scaling argu-
ments that allow to analyze these various generalizations in a
unified framework, by a proper identification of the underly-
ing optimal strategy in each case. The paper is organized as
follows.

In Sec. II, we recall the two “local” Imry-Ma arguments
proposed in Ref.[14] for the directed polymer in 1+d di-
mensions in favorable and unfavorable regions. In Sec. III,
we propose a global optimization mechanism between the
energy gained by a confinement in a favorable “tube” and the
global elastic energy to find the best favorable tube available.
This strategy fixes a confinement exponent, a global wander-
ing exponent, as well as a free-energy exponent and the form
of the left tail for the free-energy probability distribution. In
Sec. IV, we generalize our approach to other correlations in
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transverse directions and/or to other internal dimensions: we
discuss in particular the cases of directed polymers with cor-
related transverse disorder, of interfaces with random-bond
disorder and of interfaces with random-field disorder. In all
these cases, we find exponents in agreement with the replica-
scaling analysis by Zhang[15], and we thus discuss the dic-
tionary between our approach via Imry-Ma argument in one
disordered sample and the Zhang analysis in replica space.
Finally, in the appendices, we discuss two other generaliza-
tions for directed polymers in dimension 1+d: the effects of
an algebraic tail 1 /V1+m in the disorder distribution is studied
in Appendix A, whereas the case of columnar disorder(i.e.,
time-independent disorder) is discussed in Appendix B.

II. TWO LOCAL IMRY-MA ARGUMENTS FOR
FAVORABLE AND UNFAVORABLE REGIONS

In this section, we recall in details the two Imry-Ma argu-
ments proposed in Ref.[14] which constitute the basis of all
our discussion.(In Ref. [14], these arguments were given to
interpret the two types of solution found via the disorder-
dependent variational method.) As in other contexts, the
Imry-Ma argument[16] begins with the evaluation of the
typical energy associated to the disorder in a certain volume.
Here, for a polymer of lengthl and transverse lengthr, the
dimensional analysis of the correlator(2) yields the follow-
ing scaling for the typical random energy

SE
0

l

dsVfs,rWssdgD
typ

, ± uÎ l

rd , s5d

where u is a random variable of order 1. Regions withu
=u−.0 correspond to globally “unfavorable regions,”
whereas regions withu=−u+,0 correspond to globally “fa-
vorable regions.”

In other contexts, such as random-field Ising models[16],
the Imry-Ma argument then consists in comparing the energy
cost in creating domain walls with the typical energy gained
by taking advantage of the favorable fluctuations of the dis-
order. Here in the polymer context, the energy coming from
the disorder has to be compared with the entropy cost, that
can take two different forms[14]: for a swollen polymerr
@ l1/2, the entropy cost consists in an elastic termTr2/ l,
whereas for a confined polymerr ! l1/2, the entropic cost
consists in a confinement termTl / r2. These two possibilities
lead to two different Imry-Ma arguments that can be associ-
ated to unfavorable and favorable regions[14] as we now
explain.

A. Imry-Ma argument with the elastic term
for “unfavorable regions”

The free energy of an unfavorable region of lengthl− and
transverse lengthr− is the sum of the elastic termTr−

2 / l− that
represents an entropic cost, and the energy costu−

Îl−/ r−
d

from the unfavorable fluctuation of the disorder(5):

f− , T
r−

2

l−
+ u−Î l−

r−
d . s6d

The minimization with respect tor− yields, after dropping
numerical prefactors

r− , Su−

T
D2n− / 3

l−
n− with n− =

3

4 + d
, s7d

in particular,n−sd=1d=3/5. Thecorresponding scaling for
the free energy(6) of this unfavorable region reads

f− , Td/s4+ddu−
4/s4+ddl−

v− with v− = 2n− − 1 =
2 − d

4 + d
, s8d

in particular,v−sd=1d=1/5.These exponentsn− andv− ac-
tually correspond to the direct dimensional analysis of the
initial Hamiltonian, and are usually called “Imry-Ma expo-
nents” or “Flory exponents” in the more general context of
interfaces and manifolds in random media[17–23]. In di-
mensiond=1, these exponentssn−=3/5,v−=1/5d are also
the exponents predicted for the full polymer by the replica
Gaussian variational ansatz with replica symmetry breaking
[22], in contrast with the correct exponentssn=2/3,v
=1/3d for the full polymer found by the replica symmetric
Bethe ansatz solution[9].

Here, we stress that the above Imry-Ma dimensional
analysis should nota priori be applied blindly to the full
polymer, but only to the unfavorable regions. Our conclusion
for the moment being is thus the following: if the polymer
has to cross an unfavorable regionu−,0, it will behave as
follows when the dimensiond varies.

(i) For 0,d,2, the polymer will adopt a wandering
exponentn−=3/s4+dd.1/2, and the free energy will have
for exponentv−=s2−dd / s4+dd.0.

(ii ) For the marginal cased=2, the wandering exponent
reaches the free valuen−sd=2d=1/2 and thefree-energy ex-
ponent vanishesv−sd=2d=0. A more refined analysis thus
becomes necessary.

(iii ) For d.2 the above Imry-Ma argument that would
yield n−,1/2 breaks down, since for a confined polymer,
the elastic free energyr−

2 / l− has to be replaced by the con-
finement free energyl−/ r−

2. However, in this case, the free
energy is minimum in the limitr−→`, that does not corre-
spond to a confined configuration. So at the level of this
scaling analysis, the only consistent possibility ford.2 is
that the polymer will keep its free exponentn−=1/2 corre-
sponding to a finite elastic free energy, and the disorder po-
tential then corresponds to a subleading term of orderl s2−dd/2,
which is what happens in the high-temperature phase.

B. Imry-Ma argument with the confinement term
for “favorable regions”

The free energy of a favorable regionsl+,r+d is the bal-
ance between the confinement termTl+/ r+

2, representing the
entropy loss due to the confinement, and the energy gain
u+

Îl+/ r+
d from a favorable fluctuation of the disorder(5):

C. MONTHUS AND T. GAREL PHYSICAL REVIEW E69, 061112(2004)

061112-2



f+ , T
l+
r+

2 − u+Î l+
r+

d . s9d

The minimization with respect tor+ yields, after dropping
numerical prefactors,

r+ , S T

u+
D2n+

l+
n+ with n+ =

1

4 − d
, s10d

in particular,n+sd=1d=1/3. Thecorresponding scaling for
the total free energy of this favorable region reads

f+ , − T−dn+u+
4n+l+

v+ with v+ = 1 − 2n+ =
2 − d

4 − d
, s11d

in particular,v+sd=1d=1/3. In contrast with the exponents
sn−,v−d coming from a direct dimensional analysis of the
Hamiltonian, the exponentssn+,v+d take into account the
physical idea that it can be better for the polymer to remain
confined in a region to take advantage of favorable fluctua-
tions of the disorder. To our knowledge, these exponents
sn+,v+d have not been considered previously, except in Ref.
[14] where they have been introduced.

Our conclusion for the moment being is thus the follow-
ing: if the polymer has to cross a favorable regionu+.0, it
will behave as follows when the dimensiond varies:

(i) For 0,d,2, the polymer will adopt a confinement
exponentn+=1/s4−dd,1/2, and the free energy will have
for exponentv+=s2−dd / s4−dd.0.

(ii ) For the marginal cased=2, the confinement expo-
nent reaches the free valuen+sd=2d=1/2 and thefree-
energy exponent vanishesv+sd=2d=0. A more refined
analysis thus becomes necessary.

(iii ) For d.2 the above Imry-Ma argument that would
yield n+.1/2 breaks down, since the polymer is not con-
fined anymore. If one replaces the confinement terml+/ r+

2 by
the elastic termr+

2 / l+, the total free energy will be minimum
for r+→0 corresponding to a confined configuration. So at
the level of this scaling analysis, exactly as in unfavorable
regions, the only consistent possibility ford.2 is that the
polymer will keep its free exponentn+=1/2 corresponding
to a finite elastic free energy, and the disorder potential then
corresponds to a subleading term of orderl s2−dd/2, which is
what happens in the high-temperature phase.

C. Discussion

In this section, we have described via Imry-Ma arguments
what typical scalings should be expected from a polymer that
is obliged to go through a given favorable region or through
a given unfavorable region. In dimension 0,d,2, this
analysis yields two sets of nontrivial exponentssn−,v−d and
sn+,v+d for the two types of regions, whereas ford.2, the
only self-consistent exponents in the above Imry-Ma scaling
analysis are the exponents of the high-temperature phase.
This suggests that the pinned phase existing in dimension
d.2 at low temperature is very different in nature from the
physics in dimensiond,2 and requires a different type of
analysis. In the following, we will thus only consider the
cases 0,d,2, where the disorder is strong at all scales and

changes the free exponents both in favorable and in unfavor-
able regions.

III. STRUCTURE OF THE FULL POLYMER OF LENGTH
L IN DIMENSION 0 ,d,2

In this section, we consider the standard situation of a
polymer of lengthL whose origin is fixed and whose end
point is free. We discuss what is the best strategy to obtain a
minimum free energy, in terms of the favorable regions de-
scribed in the preceding section.

A. Global optimization on scaleL and exponents

The simplest strategy that seems optimal at large scaleL
is the following: the polymer will try to find a favorable
region of lengthL+,L, of transverse lengthR+,Ln+ and of
free energyF+,−Lv+. The only degree of freedom available
to find this very favorable region is the global orientation
RG,Ln, with respect to the horizontal line, of the tube of
radiusR+ starting from the origin forming the favorable re-
gion. To find the best favorable region available, the polymer
can afford a global elastic costTRG

2 /L that is at most of the
same order of magnitude of the free energyF+,Lv+ of the
favorable region it is looking for. The balance between these
two terms yields the following global transverse distance:

RG , Ln with n =
1 + v+

2
=

3 − d

4 − d
s12d

and the corresponding free energy

F , − Lv with v = v+ =
2 − d

4 − d
. s13d

These two exponents are thus the generalizations in dimen-
sion 0,d,2 of the well known exact exponentsn=2/3 and
v=1/3 in d=1 [1,8]. Moreover, our description also yields
the subleading transverse length scale

R+ , Ln+ with n+ =
1

4 − d
s14d

representing the radius of the “tube” of the favorable region,
that generalizes the transverse length scaleL1/3 introduced in
Ref. [24] to characterize the size of a “family,” i.e., paths
having free-energy differences of orderOs1d. This sublead-
ing transverse length scaleL1/3 was also interpreted in Ref.
[1] as the typical distance between two replicas in the Bethe
ansatz replica wave function[9], whereas the scaleL2/3 rep-
resent the displacement of all replicas as a whole.

The physical meaning of the present Imry-Ma scaling
analysis is thus the following: the configuration of the poly-
mer is determined by a global optimization mechanism at the
largest scale; the polymer chooses the best tube of radius
R+,Ln+ among all tubes available labeled by the global ori-
entationr=RL /Ln defined by the transverse distanceRL of
the end point. The number of different tubes available for the
choice thus scales as
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N ,
Rd

R+
d , Lg with g = dsn − n+d =

ds2 − dd
4 − d

, s15d

in particular,gsd=1d=1/3. This number is large enough to
find a “good” tube in an arbitrary sample.

B. Tail of the distribution of the free energy

The Imry-Ma analysis for favorable regions can be used
to study the tail of the probability distribution of the rescaled
free energy. Indeed, the asymptotic behavior of the random
variableu+ in the Imry-Ma argument(5) and(9) is expected
to follow to the Gaussian distribution

Psu+d .
u+→`

e−u+
2
. s16d

The same idea has been already used in the context of the
random fieldXY model [25], and in the context of a disor-
dered heteropolymer, where it was shown to be in full agree-
ment with a disorder dependent real-space renormalization
analysis(see the Appendix of Ref.[26]). In the present con-
text, we stress that the Gaussian tail(16) is valid for an initial
Gaussian disorder, whereas the presence of an algebraic tail
of arbitrary order in the initial disorder will generate a dif-
ferent tail, as discussed in Appendix A.

Here, for a Gaussian initial disorder, the Gaussian tail(16)
yields, via the change of variables(11), the following decay
for the probability distribution of the rescaled free energy
f+=F+/L+

v+:

P+sf+d ~
f+→−`

Td/4suf+udsh+/2d−1e−Td/2uf+uh+

with

h+ =
1

2n+
=

4 − d

2
. s17d

At the level of exponents where we work, sinceL+,L,
the tail of the probability distributionPsfd for the rescaled
free energyf =F /Lv of a polymer of lengthL will thus be
given by the same form(17),

Psfd ,
f→−`

P+sfd. s18d

In particular, the exponent in the exponential in one dimen-
sion is h+sd=1d=3/2, avalue that agrees with the replica-
scaling predictions[9,15] and with the numerical simulations
[27].

However, to be fully consistent with the approach we pro-
pose, we should take into account that the polymer actually
chooses the best tube among of large numberN (15) of in-
dependent tubes. In this interpretation, the random variable
u+ is not just a random variable drawn with a distribution
having the Gaussian tail(16), but it is the maximal value
umax drawn amongN independent variables, i.e., its distribu-
tion reads

rNsumaxd = NPsumaxdF1 −E
umax

+`

duPsudGN−1

,
N→`

Ne−umax
2

e−NE
umax

+`

due−u2

. s19d

In particular,umax grows logarithmically inN and thus inL
(15),

umax, Îln N , Îln L. s20d

This would lead(11) to a logarithmic correction to the expo-
nent for the free energy(13), i.e.,

F , − Lvumax
4n+ , − Lvsln Ld1/h+. s21d

Is this logarithmic correction a reality or an “artifact” of
our interpretation? On one hand, the comparison with the
results of most other studies on the subject suggests that this
logarithmic correction is spurious. On the other hand, within
our approach, it is not clear to us why this logarithmic cor-
rection should be disregarded. In particular, if the initial dis-
order distribution is not Gaussian but presents an algebraic
tail of index s1+md, it is precisely this mechanism of choos-
ing the best variableu+ that opens the possibility of obtaining
different global exponents even if the variance is finitem.2,
as discussed in Appendix A. We note moreover that the pres-
ence of some logarithmic factors coming from extremal sta-
tistics has already been proposed and numerically studied for
the directed polymer in 1+1[28], as well as in another con-
text involving polymers in random media[29]. In conclu-
sion, even if the exact solution at zero temperature[12] has
no logarithmic correction, since we are not aware of exact
solutions at nonzero temperature, and since the limit of zero
temperature cannot be discussed within our approach(see the
discussion below in Sec. III C), it seems that the presence of
this logarithmic correction for the free energy at nonzero
temperature is a possibility that cannot be completely ruled
out, at least to the best of our present knowledge. If there is
a proof in the future that there is no logarithmic correction,
this would probably mean that the “best” tube is not simply
the tube having the maximal rescaled variableu, but the tube
having the best structure on smaller scales than the global
scale.

C. Remarks on the zero-temperature limit

In this paper, we have considered that the temperature
appears only in front of the random potential in the partition
function (1) and not in front of the Wiener measure for the
Brownian paths. In this case, the elastic term is an entropy
coming from the probabilitye−R2/L to be at distanceR in time
L for a Brownian motion. In particular, this elastic term is
not present atT=0, where the problem on the hypercubic
lattice in s1+dd consists in finding the best path among the
s1+ddL possible paths, i.e., on the lattice, a path is either
allowed or forbidden, there is no elastic energy atT=0. This
corresponds to the usual model for numerical simulations on
directed polymers atT=0. However, many authors are also
interested by the models where the elastic termR2/L is an
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energy, i.e., in the partition function(1), the temperature ap-
pears not only in front of the random potential but as a global
factor in front of the two terms in the exponential(1). In this
context, the problem atT=0 consists in finding the best path
that optimizes the sum of the elastic energy and the random
energy.

However, in both cases, within our approach, the limit of
zero temperatureT→0 is very singular, because the entropy
due to confinement that played a crucial role atTÞ0 disap-
pears atT=0. Let us briefly see what happens asT→0 in the
Imry-Ma arguments energy/entropy that we have discussed.
For unfavorable regions, the prefactor of the transverse scale
r− (7) diverges and the prefactor of the free energy(8) van-
ishes: indeed, atT=0, the free energy(6) only contains the
random energy from the disorder(and no entropic elastic
term anymore): its minimization corresponds to a transverse
scaler− as big as possible, i.e., on a latticer−, l− that leads
to an energye−,u−l−

s1−dd/2. For favorable regions, the pre-
factor of the confinement scaler+ (10) vanishes, whereas the
prefactor of the free energy(11) diverges: indeed, atT=0,
the free energy(9) only contains the random energy from the
disorder (and no entropic confinement cost anymore): its
minimization corresponds to a confinement scaler+ as small
as possible, i.e., on the latticer+,1 corresponding to a
unique path that leads to an energy of ordere+,−u+l+

1/2.
In conclusion, our description with Imry-Ma arguments

cannot be used to understand the zero-temperature limit,
even if there are very direct relations betweenTÞ0 andT
=0: in d=1, the wandering exponent of the best tube at finite
temperaturen=2/3 is thesame as wandering exponent of the
best path at zero temperature, and the subleading transverse
scaleR+,L1/3 that represents in our approach the confine-
ment scale at nonzero temperature, had been previously iden-
tified in zero-temperature numerical simulations as the typi-
cal scale for the first excited states of finite energy above the
ground state[24,30].

D. What is the substructure of the polymer at smaller scales ?

From the point of view of the Imry-Ma scaling analysis
proposed in this paper, it is clear that the global exponentsv
(13) andn (12) are completely constrained by a global opti-
mization mechanism at the biggest scale. However, once the
best global tube has been chosen, it seems natural to expect
that the polymer has a “cascade” of optimizations to make on
smaller and smaller scales within the large scale constraints.
In particular, we expect that the extensive contribution to the
free-energy comes from the small scales, since the polymer
has to gain a finite contribution at each step on average.
However, we also expect that the polymer cannot avoid frus-
tration on all scales, i.e., it will be obliged sometimes to
cross unfavorable regions characterized by the exponentsn−
andv− (7) and(8). A first interesting question is: what is the
scaleL− of the biggest unfavorable region inside the globally
favorable tube? A more general question concerns the hier-
archical organization on smaller and smaller scales. Indeed,
the ultrametric tree structure of local optimal paths[31,30] as
well as Monte-Carlo simulations at finite temperature[32]
suggest that they are favorable and unfavorable regions on

various scales. In conclusion, it would be very interesting to
have a statistical description of the substructure of the global
tube, but this goes beyond the present work.

E. Discussion of some consequences

The idea of favorables tubes where the polymer remains
confined at finite temperature, with a confinement radiusLn+

much smaller than the wandering scaleLn, gives a more
precise meaning to the notion of “states” developed in the
droplet scaling theory[33,34]. It is thus interesting to men-
tion briefly some important consequences in dimension
0,d,2 with the values of the global exponents that we
have obtained.(It would be of course very interesting to give
a more precise characterization of the states at low tempera-
ture in dimensiondù2, but this is left for future work.)

1. Statistics of the effective random potential for the end
point

The effective Hamiltonian seen by the free end pointrW
=rWsLd can be decomposed into[33,34]

Heff = T
rW2

2L
+ LvFSrW =

rW

LnD , s22d

where the first term represents the elastic free energy and the
second term an effective random potential that has been re-
scaled with the global exponents, and whose statistics has to
be elucidated. The rescaled effective potentialFsrd, has been
exactly determined ind=1 [13]: it is an “Airy process”[13]
that behaves locally as a random walkÎr asr→0 and that
saturates towards a constant at large distancesr→`, in
agreement with the previous numerical study[35]. More
generally, in dimensiond, the rescaled effective potential is
expected to be independent ofL at short distancer→0 [33],
and thus the exponents defining the power-law behavior of
the effective potential at short distances

FsrWd ~
r→0

urW us s23d

is not a new exponent, but is a function of the two basic
exponents[33,34],

s =
v

n
. s24d

With the values obtained before Eqs.(12) and (13), we thus
obtain in dimension 0,d,2,

s =
2 − d

3 − d
s25d

that generalizes the random walk behaviors=1/2 of thed
=1 case. The physical meaning of the relation(24) is the
following [31,33,34]: optimal configurations whose end
points are separated by a distancer typically merge at a
distancel , r1/n and are then identical up to the origin, so that
their difference in free energy then scales aslv, rv/n. For
large distancer @Ln however, the two paths meet only the
origin, and thus experience statistically independent disor-
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ders. This is why the random potential saturates for large
separation[31,32].

2. Large-scale thermal fluctuations

In the droplet scaling theory[33,34], there are large-scale
thermal fluctuations that come from the rare nearly degener-
ate states. In our description with favorables tubes, if we
consider the excitations that involve a lengthl of the poly-
mer: there exists a large numberN, lg (15) of other less
favorable tubes of energieslv with transverse distanceD
, ln with respect to the best tube. As a consequence, with
probability T/ lv, there exists an excited tube with a free-
energy difference of orderT with respect to the best tube
[33]. The power-law distributionPsDd of the end-point trans-
verse scaleD of thermal excitations computed via dynamical
field theory[34] can be understood as follows:

PsDdDd−1dD =
T

lvusl , Ld s26d

with the corresponding sizel ,D1/n, so that

PsDd ,
1

DbwS D

LnD with b = d +
v

n
= d + 2 −

1

n
, s27d

where the cutoffw comes from the finite size of the polymer
l øL. With the values obtained before Eqs.(12) and(13), we
thus obtain in dimension 0,d,2, the power-law exponent

b =
2 + 2d − d2

3 − d
s28d

that generalizes the exponentbsd=1d=3/2.

3. Chaos exponent

The sensitivity to small changes in the disorder distribu-
tion [24,36–38] or to small changes in temperature[33] have
been interpreted at a scaling level as follows: if the small
random perturbatione induces a change of ordereLa for the
free energy of the previous state, there is an instability if
a.v for lengths larger thanLcsed,e−c with the so called
chaos exponentc=1/sa−vd. For a random-bond perturba-
tion [24,36,37], and for a temperature change[31], the expo-
nent of the perturbation is in both casesa=1/2. For the
temperature change, this comes from the behavior of entropy
fluctuationsDS,L1/2, that was conjectured in Ref.[33] and
numerically checked[33,39]. With the values obtained be-
fore (13), the chaos exponent thus reads in dimension
0,d,2:

c =
1

1/2 −v
=

2s4 − dd
d

s29d

that generalizes the well-known exponentcsd=1d=6. Fi-
nally, let us mention that more general perturbations with
other exponentsa have also been studied in Refs.[37,40],
and that the scaling form for the free-energy decorrelation
has been recently computed on a Berker lattice[41].

IV. GENERALIZATION TO OTHER DIMENSIONS
AND/OR OTHER TRANSVERSE CORRELATIONS

In this section, we generalize our approach to the case of
a D-dimensional manifold embedded in a space of total di-
mensionD+d=dt in the solid-on-solid approximation: the
manifold is described by ad-dimensional vector fieldrsxd,
wherex is theD-dimensional vector of internal coordinates.
We consider the standard Hamiltonian

H =E dDxo
m=1

D S ] r

] xm
D2

+E dDxVfx,rsxdg, s30d

whereVsx,rd is a Gaussian random potential with correlator

Vsx,rdVsx8,r8d = dDsx − x8dCsur − r8ud, s31d

where the asymptotic behavior of the correlation in trans-
verse directions is governed by some exponenta,

Csrd ~
r→`

ra. s32d

For instance, the case of local disorder characterized byd
correlations also in transverse directions corresponds via
scaling to the casea=−d, whereas a random-field disorder
corresponds toa=1.

The dimensional analysis of the elastic termLD−2R2

shows that the free behavior in the absence of disorder is
characterized by the exponent

n freesDd =
2 − D

2
s33d

that generalizes the random walk exponentn freesD=1d
=1/2 of thepolymer case. In the following, we will only
consider the cases 0,D,2, wheren free.0.

A. Local Imry-Ma argument with the elastic term

The generalization of the free energy(6) reads

f− , T
r−

2

l−
2−D + u−l−

D/2r−
a/2. s34d

For au−,0, the minimization of the free energy with re-
spect tor− yields

r− , u−
2/s4−adl−

n− with n− =
4 − D

4 − a
s35d

and the corresponding scaling for the free energy reads

f− , u−
4/s4−adl−

v− with v− = 2n− − s2 − Dd

=
2D + s2 − Dda

4 − a
. s36d

This solution is consistent as long asn−.n free, i.e., since
0,D,2,

−
2D

2 − D
, a , 4. s37d
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The conditionau−,0 shows that the physical interpreta-
tion is very different according to the sign ofa. For alla,0,
as in the special case of uncorrelated disordera=−d, the
solution obtained corresponds tou−.0, i.e., to an unfavor-
able region, where the global free energy is positivef−.0.
On the contrary, fora.0, the solution corresponds tou−,0,
i.e., to a favorable region where the global free energy is
negativef−,0.

B. Local Imry-Ma argument with the confinement term

The generalization of the Imry-Ma argument(9) with the
confinement entropy reads

f+ , TS l+

r+
2/ s2−DdDD

− u+l+
D/2r+

a/2. s38d

(A detailed analysis of the confinement entropy can be found
in Ref. [42].) For au+,0, the minimization with respect to
r+ yields

r+ , u+
−s2/Dd n+l+

n+ with n+ =
Ds2 − Dd

4D + as2 − Dd
. s39d

The corresponding scaling for the total free energy reads

f+ , u+
4D/f4D+s2−Ddagl+

v+

with

v+ = D −
2D

2 − D
n+ =

Df2D + s2 − Ddag
4D + s2 − Dda

. s40d

This solution is consistent as long as 0,n+,n free, i.e.,

−
2D

2 − D
, a. s41d

The conditionau+,0 shows that the physical interpreta-
tion is again very different according to the sign ofa. For
a,0, as in the special case of uncorrelated disordera=−d,
the solution obtained corresponds tou+.0, i.e., to a favor-
able region, where the global free energy is negativef+,0.
On the contrary, fora.0, the solution corresponds tou+,0,
i.e., to an unfavorable region where the global free energy is
positive f+.0.

C. Global optimization for a,0

For a,0, as in the polymer case with uncorrelated disor-
der, the optimal strategy will be to find a favorable region
L+,L with confinementR+,Ln+. To find the best region
available, it will be worth to afford a global elastic cost of
LD−2RG

2 of the same order of magnitude of the energy gain
E+,Lv+ of the favorable region. The balance between these
two terms yields that the global wandering will be

RG , Ln with n =
v+ + 2 −D

2
=

Ds4 − Dd + s2 − Dda
4D + s2 − Dda

.

s42d

The global free energy gain will be

F , Lv with v = v+ =
Df2D + s2 − Ddag

4D + s2 − Dda
. s43d

The subleading transverse length scale characterizing the
confinement reads

R+ , Ln+ with n+ =
Ds2 − Dd

4D + as2 − Dd
. s44d

Finally, the use of Eq.(16) for the random variableu+ yields,
via the change of variables(40) to the following decay for
the probability distribution of the free energyF,F+:

PsFd .
F→−`

1

uFu
S uFu

LvDh+/2

e−suFu/Lvdh+

with

h+ =
4D + s2 − Dda

2D
. s45d

D. Global optimization for a.0

For a.0, the previous picture completely changes, be-
cause the favorable regions are not the confined solutions
s+d, but the swollen solutionss−d. As a consequence, the
global optimization coincide with a solutions−d: the global
exponents for the transverse direction and the free energy are
thus directly given by

n = n− =
4 − D

4 − a
, s46d

v = v− =
2D + s2 − Dda

4 − a
. s47d

Finally, the use of Eq.(16) for the random variableu− yields,
via the change of variables(36) to the following decay for
the probability distribution of the free energyE,E−,

PsEd .
E→−`

1

uEu
S uEu

LvDh/2

e−suEu/Lvdh
with h =

4 − a

2
.

s48d

We now briefly describe our results with their domain of
validity for the interesting cases of a polymerD=1 or of
interfacesd=1, before we compare with the results of other
methods.

E. Results for the polymer with decaying correlations
with exponent −2,a,0

For a polymerD=1 with correlations described by the
exponenta (32) with −2,a,0, the results are the same as
for the polymer with uncorrelated disorder with the replace-
mentd→−a, i.e., there is confinement with exponent

n+ =
1

4 + a
s49d

with the corresponding exponents for the free energy and the
wandering
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v = 1 − 2n+ =
2 + a

4 + a
, s50d

n =
3 + a

4 + a
s51d

with the tail exponenth+=2+a /2. The domain of validity in
a is limited by a→−2, where the confinement exponent
reaches the free random walk exponentn+→1/2, and bya
→0 where the optimization mechanism changes.

F. Results for the polymer with long-range correlations
with exponent 0,a,4

For a polymerD=1 with correlations described by the
exponenta (32) with 0,a,4, there is no confinement, and
the exponents are directly given by the exponentss−d coming
from the direct dimensional analysis of the Hamiltonian

n =
3

4 − a
, s52d

v = 2n − 1 =
2 + a

4 − a
, s53d

and the tail exponenth=s4−ad /2. The comparison with Eq.
(51) shows that the exponents are continuous ata=0 with
the valuesnsa=0d=3/4 andvsa=0d=1/2. Special interest-
ing cases discussed in Ref.[1] are a=1, anda=2. In par-
ticular for the latter casea=2 that corresponds effectively to
the Larkin model, there exists an exact solution in terms of
replicas yielding the exact free-energy distribution[43]: our
approach is in agreement with the exact results for the global
exponentsn=3/2,v=2 and for the exponenth=1 of the tail
of the free-energy distribution[43].

G. Results for interfaces with random-bond disorder

For the special cases of interfaces of internal dimension
0,D,2 in a space of total dimensionD+1=dt, the
random-bond disorder corresponds to uncorrelated disorder
in thed=1 transverse direction, i.e., the effective exponent is
a=−d=−1,0. The constraint(41) leads to the domain of
validity 2/3,D,2, i.e., in terms of the total dimensiondt
of space

5

3
, dt , 3. s54d

The confinement exponent reads

n+ =
sdt − 1ds3 − dtd

5dt − 7
. s55d

Note that it vanishes in the limitdt→3, because the free
exponent n free also vanishes in this limit of a two-
dimensional surfaceD→2 and is replaced by logarithms, the
physical meaning being that the confinement is not a big
constraint anymore[42]. The corresponding exponents for
the free energy and wandering read

v =
sdt − 1ds3dt − 5d

5dt − 7
, s56d

n =
7dt − 8 −dt

2

5dt − 7
s57d

with the tail exponenth+=s5dt−7d / f2sdt−1dg.

H. Results for interfaces with random-field disorder

For the special cases of interfaces of dimension 0,D,2
in a space of total dimensionD+1=dt, the random-field dis-
order that corresponds to the exponent isa= +1.0. The
constraint (37) does not modify the original constraints
0,D,2, i.e., in terms of the total dimensiondt of space

1 , dt , 3. s58d

In this case, there is no confinement, and the exponents are
given by the exponentss−d, i.e., they reduce to the well-
known exponents coming from the direct dimensional analy-
sis of the Hamiltonian

n =
5 − dt

3
, s59d

v =
1 + dt

3
s60d

with the left tail exponenth=3/2, that was also found in
Ref. [23].

I. Agreement with Zhang replica scaling analysis

The exponents presented in this section are in agreement
with Zhang replica-scaling analysis[15]. It is thus useful to
describe briefly the “dictionary” between the two methods.
Whereas the traditional approach with replicas consists in
considering the limitn→0 with the possibility of replica
symmetry breaking, the replica-scaling analysis proposed by
Zhang [15] consists in analyzing the replicated problem
within a symmetric treatment of then replicas withn large
[for instancensn−1d is replaced byn2]. The leading orders in
sL ,nd of the moments are then interpreted as coming from
the tail of the probability distribution of the free energy. In
Zhang analysis, the casea,0 corresponds to an attraction
between replicas and leads to a bound state, whereas the case
a.0 corresponds to a repulsion between replicas with no
bound state. So the presence of a bound state for replicas
corresponds in our approach to the presence of a confinement
tube. In conclusion, for those who prefer to think in real
space than in replica space, our approach provides an equiva-
lent self-contained description in real space; and for those
who prefer to think in replica space, we hope that the trans-
lation in real space is also interesting, and can perhaps be
useful in other disordered models.

J. Comparison with other methods

Within the field theoretical framework, the correctness of
the direct dimensional Imry-Ma analysis for the random-field
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disorder a=1 was supported by a functional RG analysis
[18], because the large distance behavior of the correlations
are not renormalized, whereas for random-bond disordera
=−1, there are nontrivial renormalization of the exponents
[18]. So there should be a critical valueac below which the
direct dimensional analysis does not give the correct expo-
nents. It has been argued in various RG methods[19–21,44]
that (i) below the critical valueac, the wandering exponentn
sticks to the random-bond valuenRB and would thus be “su-
peruniversal”(ii ) the critical valueac is strictly negative.
However, since the argument by Fisher[18] that the long-
range correlations of the disorder are not renormalized, natu-
rally stops to apply ata=0, it seems to us that from this
point of view, the simplest scenario is that the true critical
value is actuallyac=0, in agreement with the prediction of
the replica-scaling analysis[15] and with our analysis with
confinement. Moreover, we believe that our description in-
volving a confinement mechanism suggests that a more ap-
propriate field theoretical description in the case of trans-
verse decaying correlationsa,0 should perhaps include the
presence of two different important transverse length scales,
and should perhaps involve instantons calculations or other
nonperturbative tools to describe the confinement.

Finally, we should mention that the various alternative
predictions[15,44,45] for the exponents in the domaina,0
have been tested via numerical simulations on kinetic rough-
ening with various conclusions[46,47]. We believe that our
approach, that explains the meaning of Zhang replica-scaling
exponents in physical space strongly suggests that these ex-
ponents are indeed the correct ones.

V. CONCLUSION

In this paper, we have analyzed via Imry-Ma energy/
entropy arguments the strong disorder phases that exist in
low dimensions at all nonzero temperatures for directed
polymers and interfaces in random media. Within the field of
disordered systems, the originality of random manifolds is
that they have some freedom to “choose” the disorder vari-
ables they see in a given sample, in contrast with spin sys-
tems for instance that cannot avoid any disorder variables.
Our main result is that they can use this freedom to follow
two qualitatively different strategies:(i) for disorder with
decaying transverse correlationsa,0, the optimal strategy
consists in being confined in a wandering tube, i.e., there are
two different transverse scales that are important, namely, the
wandering scale and the confinement scale;(ii ) for disorder
with long-range transverse correlationsa.0, the optimal
strategy is to be swollen, i.e., there is only one important
transverse scale, and the exponents are given by a simple
dimensional analysis of the original Hamiltonian. For the
general case of a manifold of internal dimensionD in a space
of total dimensionD+d in the presence of transverse corre-
lations of exponenta, our results for exponents agree with
Zhang replica-scaling analysis[15]. Our method thus de-
scribes the same physics, but in real space instead of being in
replica space, and this allows to make the link with the scal-
ing droplet approach: the states at finite temperatures of the
scaling droplet theory[33,34] are interpreted in our approach

as Imry-Ma favorable tubes, where the polymer remains con-
fined, and it is this confinement in an Imry-Ma favorable
tube that translates into a bound state for replicas in the
replica-scaling analysis[15].

In conclusion, we hope that our approach via simple scal-
ing arguments in real space gives a clear insight into the
strong disorder phases in low dimensions, and a complemen-
tary point of view with respect to the other methods.
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APPENDIX A: INITIAL DISORDER DISTRIBUTIONS
WITH ALGEBRAIC TAILS

For the lattice uncorrelated models, where each link has
an energyVsi ,xd drawn with some symmetric lawPsVd
=Ps−Vd, the question of the universality with respect to the
form of the initial probability distributionPsVd has attracted
a lot of interest[1], because it appeared that the presence of
long tails in the microscopic disorder

PsVd .
V→±`

1

uVu1+m sA1d

was able to change the exponents[48–50], as well as the
morphology of the associated ultrametric tree structure of the
locally optimal paths[51], even if the variance was finite
m.2.

1. The strategy of finding the best site energy at zero
temperature

For the disorder(A1), the heuristic argument[48,50] that
has been proposed to explain these dependences inm con-
sists in the balance between the maximal site energyVmax
=sLRdd1/m drawn in the volumesLRdd and the global elastic
energyR2/L, that yields the exponent

nsVmaxd
elastic smd =

m + 1

2m − d
. sA2d

This exponent corresponds to the strategy of finding the
maximal site energy and is usually considered as a lower
bound[50] for the true exponentnsmd. For instance ind=1,
this exponent is bigger than the valuenGauss=2/3 for mù5,
which means that, at least formù5, the true exponentnsmd
is not the usual onenGauss=2/3.There has been a large num-
ber of numerical studies on the true exponentnsmd, either on
the directed polymer problem or in corresponding growth
models: it is usually believed[1] that the exponent(A2) is
not the exact one[48,50] and in particular that the associated
critical valuemcsd=1d=5 in d=1 is too low[52] and should
be replaced by at leastmcsd=1d,7, even if it has been also
argued that these numerical conclusions were due to cross-
over effects and that the exponent(A2) was exact[53].

From our point of view, it is not very clear why the ex-
ponent(A2) should describe the exponents at zero tempera-
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ture of the lattice models that are measured in the numerical
simulations. Indeed, for lattice models at zero temperature,
there is no elastic energy, since a path is either allowed or
forbidden. It is thus useful to reconsider in this context the
strategy of finding the maximal site energyVmax among a
number of orderL1+d of independent sites that can be
reached for a path of lengthL. The maximal value is thus of
orderVmax,Ls1+dd/m, and since the distribution of its position
is uniform, it reads in terms of the longitudinal coordinatel
and the transverse distancer in continuum notations

rLsl,rd ,
rd−1usr , l , Ld

Ld+1 . sA3d

As a consequence, the probability distribution of the trans-
verse distancer of the best siteVmax takes the scaling form

rLsrd =E
0

L

dlrLsl,rd ,
1

L
S r

L
Dd−1S1 −

r

L
D , sA4d

i.e., the exponent corresponding to the strategy of finding the
best site energy is

nsV maxd
slatticed sm,dd = 1 sA5d

and any deviation from this extremal valuen=1 on the lat-
tice has to come from some cooperative effect of a large
number of subleading best sites. In the following, we will not
discuss the zero temperature anymore, but the finite tempera-
ture case, and we will try to describe the cooperative effects
by reconsidering our previous Imry-Ma arguments to see
what changes are necessary in the presence of algebraic tails.
So we first need to consider the random energy that can be
gained in a tube.

2. Distribution of the energy U of a path of length l in a tube
of radius r

Let us consider the random energy

U = o
i=1

l

Vfi,xsidg sA6d

of a path of lengthl in a tube of radiusr in dimensionss1
+dd. It is clear that its moments diverge fork.m as the
moments of the initial law(A1). The tail of its probability
distribution will thus present the same power-law decay

PsUd .
uUu→`

csl,rd
uUu1+m , sA7d

where the scaling of the prefactorcsl ,rd with respect tosl ,rd
can be estimated as follows. Let us introduce temporarily a
large cutoffA in the original distribution(A1) to regularize
the diverging momentsk.m:

kVklA .
A→`

Ak−m. sA8d

The largest divergence in the cutoffA of the moment

kUklA = o
i1

. . .o
ik

kVfi1,xsi1dg . . .Vfik,xsikdglA sA9d

is then given by the term of orderkVklA, corresponding to
coincident indicesi1= i2= . . . =ik and coinciding transversal
positionsxi1

= . . . =xik
. If one assumes a uniform confinement

in transverse directions within a tube of radiusr, we thus
obtain

kUklA .
A→`

Ak−m l

rdsk−1d , sA10d

i.e., the prefactorcsl ,rd of the tail (A7) scales as

csl,rd ,
l

rdsm−1d . sA11d

On the other hand, the largest contribution inl of the mo-
ments(A9) with evenk (odd moments vanish by symmetry)
comes from the term corresponding tosk/2d pairs of coin-
ciding indices, leading to

kUklA .
l→`

SkV2l
l

rdDk/2

. sA12d

The natural rescaling appropriate for this term corresponds as
it should to the rescaled variableu introduced before for the
Gaussian case(5)

U = uÎ l

rd . sA13d

However, the rescaled variableu will now present the fol-
lowing algebraic tail(A7) and (A11)

Psud .
uuu→`

slr dd1−sm/2d

uuu1+m . sA14d

The presence of a nontrivial radiusr thus generalizes the
special caser ,1 corresponding to the classical problem of
the sumU of l independent variables:

(i) For m.2, the weightslr dd1−sm/2d of the tail of the re-
scaled variableu=U /Îl vanishes in the limitl →`, i.e., there
is a generalized central limit theorem describing the limit law
of the rescaled variableu as soon as the variance is finite.
However, since the polymer will try to find the best tube
available, the presence of the algebraic tail can induce a
change in global exponents as we will see.

(ii ) For m,2, the weight of the tail in Eq.(A14) is a
now positive power ofl: the variableu is not appropriate
anymore, and the new appropriate rescaled variablev is then
defined by Eqs.(A7) and (A11)

U = vL1/mRds1−md/m, sA15d

so that the limit probability distribution ofv presents the tail

Qsvd .
uvu→`

1

uvu1+m . sA16d

Since the exponent of the transverse scaleR in Eq. sA15d
changes of sign atm=1, we will obtain a qualitative change
at m=1.
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3. Local Imry-Ma arguments

In this section, we discuss the “local” Imry-Ma arguments
in the different casesm.2, 1,m,2 and finally 0,m,1.

a. Local Imry-Ma arguments form.2

For m.2, the typical energy gained in a tube is still de-
fined in terms of the rescaled variableu (A13) and (A14),
and thus the exponentssv+,n+d (10) and (11) for typical
favorable regions andsv−,n−d (7) and (8) for typical unfa-
vorable regions are unchanged.

b. Local Imry-Ma arguments for1,m,2

For m,2, the new appropriate rescaled variable isv
(A15), and thus the typical energy associated to a tube is
different from the Gaussian case. The Imry-Ma arguments
for favorable and unfavorable regions will thus yield differ-
ent typical exponents.

(i) Analysis of the exponents in typical favorable regions.
The free energy of a typical regionsl+,r+d with the confine-
ment term(9) then becomes

f+ , T
l+
r+

2 − v+l+
1/mr+

dfs1/md−1g. sA17d

For a favorable regionv+.0, the minimization off+ with
respect tor+ yields

r+ , v+
−m/fs2−ddm+dgl+

n+smd with n+smd =
m − 1

s2 − ddm + d
.

sA18d

The corresponding free-energy reads

f+ , − v+
2m/fs2−ddm+dgl+

v+smd with v+smd =
2 + d − dm

s2 − ddm + d
.

sA19d

For 0,d,2, this analysis is valid for 1,m,2: the con-
finement exponent varies betweenn+sm→1d→0 and its
usual valuen+sm→2d→1/s4−dd, and the free-energy expo-
nent varies betweenv+sm→1d→1 and its usual value
v+sm→2d→ s2−dd / s4−dd. In particular, in dimensiond=1,
the exponents read

n+sm,d = 1d =
m − 1

m + 1
, sA20d

v+sm,d = 1d =
3 − m

m + 1
. sA21d

For dù2, these exponents are expected to be valid as
long as the confinement exponentn+smd is positive and
smaller than the free value 1/2, i.e., form,1+2/d. For
instance, in transverse dimensiond=2, the validity domain is
1,m,2, whereas ind=3 it is 1,m,5/3. Equivalently,
for fixed m in the interval 1,m,2, the exponents are valid
for d,2/sm−1d.

(ii) Analysis of the exponents in typical unfavorable re-

gions. The free energy of a typical regionsl−,r−d with the
elastic term(6) then becomes

f− , T
r−

2

l−
+ v−l−

1/mr−
dfs1/md−1g. sA22d

For an unfavorable regionv−.0, the minimization off−
with respect tor− yields

r− , v−
m / fs2+ddm−dgl−

n−smd with n−smd =
m + 1

s2 + ddm − d
.

sA23d

The corresponding free energy reads

f− , v−
2m/fs2+ddm−dgl−

v−smd with v−smd =
2 + d − dm

s2 + ddm − d
.

sA24d

For 0,d,2, this analysis is valid for 1,m,2: the
roughness exponent varies betweenn−sm→1d→1 and its
usual valuen−sm→2d→3/s4+dd, and the free-energy expo-
nent varies betweenv−sm→1d→1 and its usual value
v−sm→2d→ s2−dd / s4+dd. In particular, in dimensiond=1,
the exponents read

n−sm,d = 1d =
m + 1

3m − 1
, sA25d

v−sm,d = 1d =
3 − m

3m − 1
. sA26d

c. Local Imry-Ma argument for0,m,1

For 0,m,1, the exponent of the transverse scaleR in
Eq. (A15) is positive. As a consequence, exactly as in the
case of long-range transverse correlation, the favorable re-
gions do not correspond to confined solutions, but to swollen
solutions. The free-energy of a regionsl−,r−d with the elastic
term (6) has now to be replaced by

f− , T
r−

2

l−
− v−l−

1/mr−
dfs1/md−1g. sA27d

For a favorable regionv−,0, the minimization with respect
to r− yields

r− , v−
m/fs2+ddm−dgl−

n−smd with n−smd =
m + 1

s2 + ddm − d

sA28d

and the corresponding free-energy reads

f− , − v−
2m/fs2+ddm−dgl−

v−smd with v−smd =
2 + d − dm

s2 + ddm − d
.

sA29d

In particular, in the limitm→1, the free-energy exponent
v−sm→1−d=1 is in continuity with thev+sm→1+d=1, Eq.
(A19).
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4. Global optimization for the full polymer

In the presence of long tails, the global optimization for
the full polymer consists in looking for the confinement scale
RS,LnSsmd and the global wandering scaleRG,Lnsmd that
minimize the global free energy containing three contribu-
tions

FLsRG,RSd = T
RG

2

L
+ T

L

RS
2 − UmaxSL,RS;N =

RG
d

RS
dD .

sA30d

The first termRG
2 /L represents the global elastic cost for the

diffusive tube. The second termL /RS
2 represents the confine-

ment entropy cost. The third termUmax represents the best
energy amongN independent variablesU, whereU repre-
sents the random energy associated to a tubesL ,RSd. Using
the form (A7) and (A11) of the tail of its probability distri-
bution, we thus obtain the following scaling:

UmaxSL,RS;N =
RG

d

RS
dD , fcsL,RSdNg1/m , RS

−dsLRG
d d1/m.

sA31d

This result shows why the introduction of two transverse
scalessRS,RGd is actually always better to gain energy than
the swollen solution that involves only one scaleRG, whose
free energy reads

FL
swollensRGd = T

RG
2

L
− UtypsL,RGd, sA32d

where the typical value scales asUtypsL ,RGd,RG
−dsLRG

d d1/m

for m,2 (A15). The comparison with Eq.(A31) is thus im-
mediate: both have the same factorsLRG

d d1/m presenting the
scale of the best sites in the volumesLRG

d d, but the factor of
the density in the transverse directions of the tube is much
better in a confined tubeRS

−d than for the swollen solution
RG

−d.
The optimization of Eq.(A30) with respect tosRS,RGd

yields the following exponents:

nsmd =
1 + ms1 − dd
s2 − ddm − d

, sA33d

nSsmd =
m − sd + 1d

s2 − ddm − d
. sA34d

These exponents are valid in transverse dimension
0,d,2 in the domain

mssdd = d + 1 , m , mcsdd, sA35d

where the inferior valuemssdd=d+1 corresponds to the point
where the confinement exponent vanishesnSsd+1d=0,
whereas the superior value corresponds the critical value

mcsdd =
2s1 + dnd
s1 + dn+d

= 2 +d −
d2

2
, sA36d

where the Gaussian exponents are recovered. This critical
value varies betweenmcsd→0d→2 andmcsd→2d→2, and
is maximal ford=1 with the valuemcsd=1d=5/2. For in-
stance, in dimensiond=1, the exponents(A34),

nsm,d = 1d =
1

m − 1
, sA37d

nSsm,d = 1d =
m − 2

m − 1
sA38d

are thus expected to be valid for 2ømømcsd=1d=5/2.
Let us now discuss what happens form,mssdd=d+1.

Below this value, the confinement exponent would become
negative, which is unphysical, and thus the confinement ex-
ponent will stick to its minimal value

nSfm , mssdd = d + 1g = 0 sA39d

corresponding to an extreme confinement. In this regime, the
confinement entropy of orderL is subleading with respect to
the elastic entropy and the disorder energy in Eq.(A30). The
balance between these two terms then coincides with the
estimation(A2) coming from the single best site strategy

nSd

2
, m , mssdd = d + 1D = nsV maxd

elastic smd =
m + 1

2m − d
. sA40d

Note that this wandering exponent is then always greater
than one. As a consequence, on a lattice, the wandering ex-
ponent will stick to its maximal valuen=1,

nlatticefm ø mssdd = d + 1g = 1. sA41d

5. Discussion

In this appendix, we have shown how the presence of
algebraic tails in the initial distribution could be taken into
account in our approach to yield a change in the global ex-
ponents even in the cases where the variance is finitem.2.
However, even if our results are on this point qualitatively
correct, the status of the quantitative results is not clear. In-
deed, in dimensiond=1, we have obtain asm varies for the
wandering exponent at nonzero temperature

nsd = 1,2, m , 5/2d =
1

m − 1
, sA42d

nsd = 1,1/2, m , 2d =
m + 1

2m − 1
ù 1, sA43d

i.e.,

nlatticesm ø 2d = 1,

where the change that takes place atm=2 with the corre-
sponding valuensm=2d=1, between a phase with a positive
confinement exponentnssm.2,d=1d.0 and a phase with a
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vanishing confinement exponentnssm,2,d=1d=0. The re-
sults(A43) for m.2 are far from the exponents measured at
T=0 in numerical simulations: in particular, the critical value
we have obtainedmcsd=1d=5/2 is very far from the lattice
numerical estimationmcsd=1,T=0d,7 [52,1]. Is there a
problem in this case between the zero-temperature best path
and our approach at nonzero temperature based on the con-
finement entropy? Or is our Imry-Ma approach too simple to
describe correctly the algebraic tails? For instance, it may be
that the smaller scales have to be taken into account, in con-
trast with the Gaussian case where the optimization on the
biggest scale fixes the exponents.

APPENDIX B: CASE OF COLUMNAR DISORDER

Following the suggestion of an anonymous referee, we
now briefly discuss the confinement properties of a directed
polymer at nonzero temperature in the presence of columnar
disorder, i.e., when the random potentialVfs,rWssdg becomes a
function of spaceVsrWd only (see Refs.[1,54] and references
therein, for the physical motivations and the results of vari-
ous approaches). The case of columnar disorder is known to

be governed by the extremal statistics of the initial distribu-
tion [54], and thus to simplify the discussion, we consider
the specific case of binary disorderVsrWd= ±v0. The probabil-
ity P+sRd to have a tube of radiusR containing only attrac-
tive lines decays exponentially as in the standard Lifshitz
argument

P+sRd , e−Rd
. sB1d

The best favorable tube of radiusRS amongN,RG
d /RS

d inde-
pendent tubes has for radiusRS,sln Nd1/d. This best tube
allows to reach the best total energy available −v0L, whereas
the confinement entropic cost and the elastic cost are, respec-
tively, TL/RS

2 and TRG
2 /L. The best solution is thus the fol-

lowing at leading order:(i) the confinement radius of the best
favorable tube grows logarithmicallyRS,sln Ld1/d; (ii ) the
transverse distance between the origin and the best tube
grows almost linearlyRG,fL / sln Ld1/dg; (iii ) the difference
between the free-energy and its extensive part decays as
DF,fL / sln Ld2/dg. The result for the free-energy is in agree-
ment with Ref.[54], whereas the exponent for the logarith-
mic factor in the total transverse displacementRG is different
from Ref. [54].
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