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We analyze, via Imry-Ma scaling arguments, the strong disorder phases that exist in low dimensions at all
temperatures for directed polymers and interfaces in random media. For the uncorrelated Gaussian disorder, we
obtain that the optimal strategy for the polymer in dimensiord Ivith 0<<d< 2 involves at the same tim@)

a confinement in a favorable tube of radiBg~L"s with vg=1/(4-d)<1/2 (ii) a superdiffusive behavior
R~L" with »=(3-d)/(4-d)>1/2 for the wandering of the best favorable tube available. The corresponding
free energy then scales &~L“ with w=2v—1 and the left tail of the probability distribution involves a
stretched exponential of exponent(4-d)/2. These results generalize the well known exact exponents
=2/3,w=1/3, and»=3/2 ind=1, where the subleading transverse lengg L1 is known as the typical
distance between two replicas in the Bethe ansatz wave function. We then extend our approach to correlated
disorder in transverse directions with exponenand/or to manifolds in dimensioD +d=d; with 0<D <2.

The strategy of being both confined and superdiffusive is still optimal for decaying correl&ticn®),
whereas it is not for growing correlatiofia > 0). In particular, for an interface of dimensidd,—1) in a space

of total dimension 5/3d;<3 with random-bond disorder, our approach yields the confinement exponent
vg=(di—1)(3—-d,)/(5d;- 7). Finally, we study the exponents in the presence of an algebraic ¥} In the
disorder distribution, and obtain various regimes in thed) plane.
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I. INTRODUCTION methods: via the mapping towards a damped Burgers equa-

Directed pol . d diah ttracted a lot ion with random forcing, there exists an exact steady-state
Irected polymers in random media have attracted a 10t Okyistripytion that fixes the values of the expond@s within

interest for many years, either as interesting disordered modpg repjica framework, there exists exact Bethe ansatz solu-
els or in relation with stochastic growth mod€ls]. For  isns “that have been studied either in unbounded space
polymers in dimension 1d described in the continuum limit [9,101, or in bounded spaciL1]; there exists an exact com-

by the partition function binatorial solution at zero temperatur?], as well as other
Loy . exact results via the correspondence with stochastic growth
Z:fDF(s)e"fo d(dr/ds)™-4f ds\sr(s)] (1)  models[13] in the same Kardar-Parisi-Zhang universality
class. So there are plenty of reasons why the exponents are
with an uncorrelated Gaussian random potential exactly 1/3 and 2/3 iml=1. However, various questions are
- still open or under debafd], concerning the generalizations
V(s,NV(s',F) = 8(s=s) o4 -17), (2)  of these exponents in various ways, namely:in other

the phase diagram is the followirid]: in dimensiond>2, transverse dime_nsionx (i) i_n th..Ef‘ presence of transverse
there exists a phase transition between a free phase at hi@ﬂrrelanons, or time correlatlt_)ngu).for me_mlfolds an_d n-
temperaturg2,3], and a pinned phase at low temperature:.e.rfa(l:edsf Ofdh'gr:fr mbter_nal dlmenS|o_rDs (f'v) for varlousl
this phase transition has been studied numericallyl#38 It?rlft;llli taillssor er distributions, presenting for instance alge-
[4], exactly on a Cayley trefs] and on hierarchical lattice '

[6]. On the contrary, in dimensiod<2, there is no free In this paper, our aim is 1o present Imry-Ma scaling argu-
phase, i.e., any initi,al disorder drives, the polymer into aments that allow to analyze these various generalizations in a

strong disorder phase. The marginal dimensier2 has been unified framework, by a proper identification of the underly-

controversial and deserves a special discusgiprA strong ing optimal strategy in each case. The paper is organized as

. - - . . follows.
disorder phase is characterized in particular by two expo-
P P y P In Sec. II, we recall the two “local” Imry-Ma arguments

nentsw andv for the free energy and the transverse length proposed in Ref[14] for the directed polymer in 16 di-

scaleR: . . .
mensions in favorable and unfavorable regions. In Sec. I,
F(L) ~ L®, (3) we propose a global optimization mechanism between the
energy gained by a confinement in a favorable “tube” and the
R(L) ~L” (4) global elastic energy to find the best favorable tube available.

This strategy fixes a confinement exponent, a global wander-
with the expected scaling relatiom=2v-1 [7]. In 1+1, ing exponent, as well as a free-energy exponent and the form
these exponenits andv are exactly known to be=1/3 and  of the left tail for the free-energy probability distribution. In
v=2/3, because ird=1, some “miracles” happen in various Sec. IV, we generalize our approach to other correlations in
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transverse directions and/or to other internal dimensions: we r2 |
discuss in particular the cases of directed polymers with cor- fo~ TI_ U d (6)
related transverse disorder, of interfaces with random-bond - -

disorder and of interfaces with random-field disorder. In all
these cases, we find exponents in agreement with the replic
scaling analysis by Zhand 5], and we thus discuss the dic-
tionary between our approach via Imry-Ma argument in one (
r_ ~

The minimization with respect to_ yields, after dropping
flumerical prefactors

disordered sample and the Zhang analysis in replica space.
Finally, in the appendices, we discuss two other generaliza-
tions for directed polymers in dimension #@l:+the effects of
an algebraic tail 1V*** in the disorder distribution is studied
in Appendix A, whereas the case of columnar disor@er,
time-independent disordeis discussed in Appendix B.

u_ 2v_/3 3
— - with v.=—- 7
T ) - W T 0
in particular, v_(d=1)=3/5. Thecorresponding scaling for
the free energy6) of this unfavorable region reads

2-d
£~ TH@d) Do it ) =2y —1= —, (8
4+d

Il. TWO LOCAL IMRY-MA ARGUMENTS FOR
FAVORABLE AND UNFAVORABLE REGIONS in particular,w_(d=1)=1/5. These exponents. and w_ ac-
tually correspond to the direct dimensional analysis of the
In this section, we recall in details the two Imry-Ma argu- initial Hamiltonian, and are usually called “Imry-Ma expo-
ments proposed in Ref14] which constitute the basis of all nents” or “Flory exponents” in the more general context of
our discussion(In Ref.[14], these arguments were given to interfaces and manifolds in random medi/-23. In di-
interpret the two types of solution found via the disorder-mensiond=1, these exponents_=3/5,w_=1/5) are also
dependent variational methgdAs in other contexts, the the exponents predicted for the full polymer by the replica
Imry-Ma argument[16] begins with the evaluation of the Gaussian variational ansatz with replica symmetry breaking
typical energy associated to the disorder in a certain volumg22], in contrast with the correct exponents=2/3,w

Here, for a polymer of length and transverse length the  =1/3) for the full polymer found by the replica symmetric
dimensional analysis of the correlat@) yields the follow-  Bethe ansatz solutiof®].
ing scaling for the typical random energy Here, we stress that the above Imry-Ma dimensional
analysis should no& priori be applied blindly to the full
| polymer, but only to the unfavorable regions. Our conclusion
(f ds\,{s,F(s)]) ~ 4 u\/I, (5)  for the moment being is thus the following: if the polymer
0 typ r has to cross an unfavorable region<O, it will behave as

follows when the dimensiod varies.
(i) For 0<d<?2, the polymer will adopt a wandering

whereu is a random variable of order 1. Regions with oy honent, =3/(4+d)>1/2, and the free energy will have
=u_>0 correspond to globally “unfavorable regions,” for exponentw_=(2-d)/(4+d)>0

whereas regions with=-u, <0 correspond to globally “fa-
vorable regions.”

In other contexts, such as random-field Ising modi&&,
the Imry-Ma argument then consists in comparing the energ
cost in creating domain walls with the typical energy gained €comes necessary.
by taking advantage of the favorable fluctuations of the dis- . (iit) For d>2 the above '”.W"V'a arg“me‘.“ that would
order. Here in the polymer context, the energy coming fromyleld V‘<.1/2 breaks down, since for a confined polymer,
the disorder has to be compared with the entropy cost, th e elastic free energy/|_ has to be replaced by the con-

2 . .
can take two different form§l4]: for a swollen polymer memen_t fre_e.energy_/trh_. :ﬂoy;/eve; '?htr,:'z case, :he free
>112, the entropy cost consists in an elastic tefrg/l, ~ ENErdy IS minimum in the fimit-—ce, that does not corre-

whereas for a confined polymer<|'?, the entropic cost spond 1o a confined configuration. So at the level of this
consists in a confinement terfit/r2. These two possibilities tsﬁat";}? ana|1Iy3|s, th.ﬁ Enly (_:ton]lestent possl;tl"_“?/?z IS
lead to two different Imry-Ma arguments that can be associ- at tné polymer Wil keep IS free exponent= corre-

ated to unfavorable and favorable regidig] as we now sponding to a finite elastic free energy, and the disorder po-
tential then corresponds to a subleading term of ofdet’?,

(ii) For the marginal casd=2, the wandering exponent
reaches the free value(d=2)=1/2 and thefree-energy ex-
onent vanishesw_(d=2)=0. A more refined analysis thus

explain. C ) .
P which is what happens in the high-temperature phase.
A. Imry-Ma argument with the elastic term B. Imry-Ma argument with the confinement term
for “unfavorable regions” for “favorable regions”
The free energy of an unfavorable region of lengtland The free energy of a favorable regidh,r.) is the bal-

transverse length_ is the sum of the elastic terifr?/I_that  ance between the confinement tefiia/r2, representing the
represents an entropic cost, and the energy oost_/r?  entropy loss due to the confinement, and the energy gain
from the unfavorable fluctuation of the disordé: usy1,/rd from a favorable fluctuation of the disordes):
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changes the free exponents both in favorable and in unfavor-

I I
fo~ TS — Ui/ - (90 able regions.

re rs
The minimization with respect to, yields, after dropping  |;| STRUCTURE OF THE FULL POLYMER OF LENGTH
numerical prefactors, L IN DIMENSION 0 <d<?2

2 . .
- l V+ vy ; - In this section, we consider the standard situation of a
ry I with v, , (10) A
Uy 4-d polymer of lengthL whose origin is fixed and whose end

point is free. We discuss what is the best strategy to obtain a
minimum free energy, in terms of the favorable regions de-
scribed in the preceding section.

in particular, v,(d=1)=1/3. Thecorresponding scaling for
the total free energy of this favorable region reads

fo —T @9 With =120, = 2-0 (11)

4-d

in particular, w,(d=1)=1/3. In contrast with the exponents  The simplest strategy that seems optimal at large dcale
(v_,w_) coming from a direct dimensional analysis of the iS the following: the polymer will try to find a favorable
Hamiltonian, the exponenté,,w,) take into account the egion of lengthL.~L, of transverse lengtR, ~L" and of
physical idea that it can be better for the polymer to remair{'€€ €Nergyr,~-L**. The only degree of freedom available
confined in a region to take advantage of favorable fluctual® find this very favorable region is the global orientation
tions of the disorder. To our knowledge, these exponent§e L' With respect to the horizontal line, of the tube of

(v,,w,) have not been considered previously, except in Refradius& starting from the origin forming t_he favorable re-
[14] where they have been introduced. gion. To find the best favorable region available, the polymer

Our conclusion for the moment being is thus the follow- ¢@n afford a global elastic coSIRG/L that is at most of the

ing: if the polymer has to cross a favorable regign>0, it ~ Same order of magnitude of the free enefgy-L®+ of the
wigll behavg a); follows when the dimensidmarigelgrp favorable region it is looking for. The balance between these

(i) For 0<d<2, the polymer will adopt a confinement WO terms yields the following global transverse distance:
exponentr,=1/(4-d)<1/2, and the free energy will have

A. Global optimization on scaleL and exponents

for exponentw,=(2-d)/(4-d)>0. Rg~L” with v= lto, = ﬂ (12)
(i) For the marginal casd=2, the confinement expo- 2 4-d

nent reaches the free value(d=2)=1/2 and thefree- .

energy exponent vanishes,(d=2)=0. A more refined and the corresponding free energy

analysis thus becomes necessary. 2_d
(iii) For d>2 the above Imry-Ma argument that would F~-L? with w=w,= 1 d (13

yield v,>1/2 breaks down, since the polymer is not con-

fined anymore. If one replaces the confinement tertr? by o .
the elastic ternt2/1,, the total free energy will be minimum These two exponents are thus the generalizations in dimen-

for r,— 0 corresponding to a confined configuration. So atSion 0<d<2 of the well known exact exponenis:2/3 and

the level of this scaling analysis, exactly as in unfavorable“’zl/3 in d=1[1,8]. Moreover, our description also yields

regions, the only consistent possibility fde>2 is that the the subleading transverse length scale
polymer will keep its free exponent,=1/2 corresponding 1
to a finite elastic free energy, and the disorder potential then R, ~L* with »,=—— (14
corresponds to a subleading term of ordlér?2, which is 4-d

what happens in the high-temperature phase.
PP g P P representing the radius of the “tube” of the favorable region,

that generalizes the transverse length st&féintroduced in
Ref. [24] to characterize the size of a “family,” i.e., paths
In this section, we have described via Imry-Ma argumentsaving free-energy differences of ord®(1). This sublead-
what typical scalings should be expected from a polymer thaihg transverse length scalé’® was also interpreted in Ref.
is obliged to go through a given favorable region or through[1] as the typical distance between two replicas in the Bethe
a given unfavorable region. In dimension<@<2, this  ansatz replica wave functidi®], whereas the scale?’ rep-
analysis yields two sets of nontrivial exponefits,w_) and  resent the displacement of all replicas as a whole.
(v:,w,) for the two types of regions, whereas fr2, the The physical meaning of the present Imry-Ma scaling
only self-consistent exponents in the above Imry-Ma scalingnalysis is thus the following: the configuration of the poly-
analysis are the exponents of the high-temperature phaseer is determined by a global optimization mechanism at the
This suggests that the pinned phase existing in dimensiolargest scale; the polymer chooses the best tube of radius
d>2 at low temperature is very different in nature from the R, ~ L™ among all tubes available labeled by the global ori-
physics in dimensiom <2 and requires a different type of entationp=R, /L” defined by the transverse distanRg of
analysis. In the following, we will thus only consider the the end point. The number of different tubes available for the
cases 6<d< 2, where the disorder is strong at all scales ancchoice thus scales as

C. Discussion
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R . d(2-d) - N-1
N~—7~L" with y=dv-v,)=—""7, (15 PN(Uma) = NP(Upnad| 1 - duP(u)
R: 4-d Umax
in particular, y(d=1)=1/3. This number is large enough to 2 _NJW duet?
find a “good” tube in an arbitrary sample. o NeTnee . : (19

In particular,uy,,x grows logarithmically inN and thus inL
B. Tail of the distribution of the free energy (15)

The Imry-Ma analysis for favorable regions can be used UM N~ VN L (20)
to study the tail of the probability distribution of the rescaled max ™ ¥ Vi e
free energy. Indeed, the asymptotic behavior of the randorithis would lead11) to a logarithmic correction to the expo-
variableu, in the Imry-Ma argument5) and(9) is expected nent for the free energgl3), i.e.,
to follow to the Gaussian distribution 4
F~—Leu? ~—L(In L)Y, (21)

max

2
P(u,) = e (16) Is this logarithmic correction a reality or an “artifact” of
U our interpretation? On one hand, the comparison with the

results of most other studies on the subject suggests that this

The same idea has been already used in the context of &y arithmic correction is spurious. On the other hand, within
random fieldXY model[25], and in the context of & disor- - anproach, it is not clear to us why this logarithmic cor-

dered h_eteropqumer, where it was shown 1o be in ful 89r€€ection should be disregarded. In particular, if the initial dis-
ment V.V'th a disorder delpendent real-space renormalizatiogyyer gistribution is not Gaussian but presents an algebraic
analysis(see the Appendix of Ref26]). In the present con- i of index (1+4), it is precisely this mechanism of choos-

text, we stress that the Gaussian (a8 is valid for an initial . .ing the best variabla, that opens the possibility of obtaining
Gaussian disorder, whereas the presence of an algebraic tgik. .« global exponents even if the variance is fipite 2
of arbitra_lry ord_er in the i_nitial disofdef will generate a dif- as discussed in Appendix A. We note moreover that the’pres-
ferent tail, as d|scus_sed.||j App_end|x A. . ence of some logarithmic factors coming from extremal sta-
. Here,.for a Gaussian mma! disorder, the Gau;&ar(lﬁ) tistics has already been proposed and numerically studied for
yields, via the change of variabl¢$l), the following decay the directed polymer in 1+[28], as well as in another con-
for the ejrobability distribution of the rescaled free energy,,. involving polymers in ranaom medi29]. In conclu-
f=F /Ly sion, even if the exact solution at zero tempera{lig has
e 2 1 no logarithmic correction, since we are not aware of exact
Po(fy) o TI4(|f,))m2- LT solutions at nonzero temperature, and since the limit of zero
fyme temperature cannot be discussed within our apprésed the
discussion below in Sec. lIICit seems that the presence of
this logarithmic correction for the free energy at nonzero
temperature is a possibility that cannot be completely ruled

with

! = 4-d (17)  out, at least to the best of our present knowledge. If there is

2v, 2 a proof in the future that there is no logarithmic correction,
this would probably mean that the “best” tube is not simply
the tube having the maximal rescaled variahléut the tube
having the best structure on smaller scales than the global
scale.

7+

At the level of exponents where we work, since~L,
the tail of the probability distributiorP(f) for the rescaled
free energyf=F/L® of a polymer of lengthL will thus be
given by the same fornil7),

P(f) ~ Pu(f). (18 C. Remarks on the zero-temperature limit
f——oo

In this paper, we have considered that the temperature

In particular, the exponent in the exponential in one dimen2ppears only in front of the random potential in the partition
sion is 7,(d=1)=3/2, avalue that agrees with the replica- functlo'n (1) and not in front of the W|en_er measure for the
scaling prediction$9,15 and with the numerical simulations Brownian paths. In this case, the elastic term is an entropy
[27]. coming from the probabilitg™™"" to be at distanc® in time

However, to be fully consistent with the approach we pro-L for a Brownian motion. In particular, this elastic term is
pose, we should take into account that the polymer actuallyiot present af=0, where the problem on the hypercubic
chooses the best tube among of large nunibeéi5) of in-  lattice in (1+d) consists in finding the best path among the
dependent tubes. In this interpretation, the random variablél+d)" possible paths, i.e., on the lattice, a path is either
u, is not just a random variable drawn with a distribution allowed or forbidden, there is no elastic energyat0. This
having the Gaussian taill6), but it is the maximal value corresponds to the usual model for numerical simulations on
Umax drawn amongN independent variables, i.e., its distribu- directed polymers af=0. However, many authors are also
tion reads interested by the models where the elastic t&L is an
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energy, i.e., in the partition functiofl), the temperature ap- various scales. In conclusion, it would be very interesting to
pears not only in front of the random potential but as a globahave a statistical description of the substructure of the global
factor in front of the two terms in the exponentid). In this  tube, but this goes beyond the present work.
context, the problem @t=0 consists in finding the best path
that optimizes the sum of the elastic energy and the random
energy.

However, in both cases, within our approach, the limit of The idea of favorables tubes where the polymer remains
zero temperaturg — 0 is very singular, because the entropy confined at finite temperature, with a confinement radlitis
due to confinement that played a crucial roleTat 0 disap- much smaller than the wandering scdlg gives a more
pears aff =0. Let us briefly see what happensTas:0 inthe  precise meaning to the notion of “states” developed in the
Imry-Ma arguments energy/entropy that we have discussedroplet scaling theory33,34. It is thus interesting to men-
For unfavorable regions, the prefactor of the transverse scatéon briefly some important consequences in dimension
r_ (7) diverges and the prefactor of the free ene(@yvan- 0<d<2 with the values of the global exponents that we
ishes: indeed, af=0, the free energy6) only contains the have obtainedlt would be of course very interesting to give
random energy from the disordg¢and no entropic elastic a more precise characterization of the states at low tempera-
term anymorg its minimization corresponds to a transverseture in dimensiord= 2, but this is left for future work.
scaler_ as big as possible, i.e., on a lattice~|_ that leads
to an energye_~u_l*""%. For favorable regions, the pre- 1. Statistics of the effective random potential for the end
factor of the confinement scate (10) vanishes, whereas the point
prefactor of the free energ§ll) diverges: indeed, at=0,
the free energy9) only contains the random energy from the

E. Discussion of some consequences

The effective Hamiltonian seen by the free end pdgint

disorder (and no entropic confinement cost anymorgs ~ ='(L) can be decomposed inf83,34
minimization corresponds to a confinement sgalas small P2 P
as possible, i.e., on the lattiog ~1 corresponding to a Heﬁ:TZH_wq)(,;:L—V), (22)

unique path that leads to an energy of ordet —u,l%2.

In conclusion, our description with Imry-Ma arguments \here the first term represents the elastic free energy and the
cannot be used to understand the zero-temperature limi§econd term an effective random potential that has been re-
even if there are very direct relations betwek# 0 andT  scaled with the global exponents, and whose statistics has to
=0:ind=1, the wandering exponent of the best tube at finiteye elycidated. The rescaled effective potentigh), has been
temperatures=2/3 is thesame as wandering exponent of the gy acily determined =1 [13]: it is an “Airy process’[13]
best path at zero temperature, and the subleading transvergg; pehaves locally as a random walk asp— 0 and that
scaleR, ~L** that represents in our approach the confine-gayrates towards a constant at large distancese, in
ment scale at nonzero temperature, had been previously 'deﬂgreement with the previous numerical stug86]. More
tified in zero-temperature numerical simulations as the typiyenerally, in dimension, the rescaled effective potential is
cal scale for the first excited states of finite energy above th xpected to be independentlot short distance — 0 [33]
ground stat¢24,3Q. and thus the exponent defining the power-law behavior of

the effective potential at short distances

. 5 N
D. What is the substructure of the polymer at smaller scales 7 d(p) x0|p|o (23)

From the point of view of the Imry-Ma scaling analysis
proposed in this paper, it is clear that the global exponents is not a new exponent, but is a function of the two basic
(13) and v (12) are completely constrained by a global opti- exponentg33,34,
mization mechanism at the biggest scale. However, once the
best global tube has been chosen, it seems natural to expect
that the polymer has a “cascade” of optimizations to make on
smaller and smaller scales within the large scale constraints, . .
In particular, we expect that the extensivgl contribution to th§N |th_th_e vglues thalned before Eq42) and(13), we thus
free-energy comes from the small scales, since the polymecfbtaln in dimension &d<2,
has to gain a finite contribution at each step on average. 2-d
However, we also expect that the polymer cannot avoid frus- o= 3.4 (25)
tration on all scales, i.e., it will be obliged sometimes to
cross unfavorable regions characterized by the exponents that generalizes the random walk behawor1/2 of thed
andw_ (7) and(8). A first interesting question is: what is the =1 case. The physical meaning of the relati@4) is the
scaleL_ of the biggest unfavorable region inside the globallyfollowing [31,33,34: optimal configurations whose end
favorable tube? A more general question concerns the hiepoints are separated by a distancaypically merge at a
archical organization on smaller and smaller scales. Indeedjistancd ~ r¥” and are then identical up to the origin, so that
the ultrametric tree structure of local optimal pafB%,30 as  their difference in free energy then scalesl@s r®’”. For
well as Monte-Carlo simulations at finite temperat(ig2] large distance >L" however, the two paths meet only the
suggest that they are favorable and unfavorable regions acaorigin, and thus experience statistically independent disor-

(24)

w
g=—
14
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ders. This is why the random potential saturates for large V. GENERALIZATION TO OTHER DIMENSIONS
separatior[31,32. AND/OR OTHER TRANSVERSE CORRELATIONS

In this section, we generalize our approach to the case of
a D-dimensional manifold embedded in a space of total di-
In the droplet scaling theor}d3,34, there are large-scale mensionD+d=d, in the solid-on-solid approximation: the
thermal fluctuations that come from the rare nearly degenemanifold is described by d-dimensional vector field(x),
ate states. In our description with favorables tubes, if wewherex is the D-dimensional vector of internal coordinates.
consider the excitations that involve a lengtbf the poly-  We consider the standard Hamiltonian
mer: there exists a large numbir~17 (15) of other less 5 ,
favorable tubes of energid$ with transverse distanca ar
~1” with respect to the best tube. As a consequence, with H :f dDXZ (&_) + J dxMxr(x)], (30)
probability T/1¢, there exists an excited tube with a free- #=1 .
energy difference of ordef with respect to the best tube whereV(x,r) is a Gaussian random potential with correlator
[33]. The power-law distributioP(A) of the end-point trans-
verse scal@ of thermal excitations computed via dynamical V(X,NV(X',r") = P (x=x)C(r = r']), (31
field theory[34] can be understood as follows:

2. Large-scale thermal fluctuations

where the asymptotic behavior of the correlation in trans-
verse directions is governed by some exponent

C(r) o« re. (32

r—oo

P(A)A% A = IIwa(l <L) (26)

with the corresponding sizZe~ A'”, so that . . .
P 9 For instance, the case of local disorder characterized by

1 /A o 1 correlations also in transverse directions corresponds via
P(A) ~ E,W(p) with b=d+—=d+2-—-, (27 scaling to the case=-d, whereas a random-field disorder
v v corresponds ta=1.

, . . . P
where the cutoffv comes from the finite size of the polymer The dimensional analys_,|s .Of the elastic terln?_ R .
| <L. With the values obtained before Eq$2) and(13), we shows that the free behavior in the absence of disorder is

thus obtain in dimension€©@d<2, the power-law exponent characterized by the exponent

2-D
2+2d-d? == =
3-d
) N that generalizes the random walk exponenf.{(D=1)
that generalizes the exponesitd=1)=3/2. =1/2 of thepolymer case. In the following, we will only

consider the cases<0D <2, wherevs,e.>0.
3. Chaos exponent

The sensitivity to small changes in the disorder distribu- A. Local Imry-Ma argument with the elastic term
tion [24,36—38 or to small changes in temperaty®3] have
been interpreted at a scaling level as follows: if the small
random perturbatior induces a change of ordet* for the r2
free energy of the previous state, there is an instability if fo~ le—__D +u %72, (34)
a>w for lengths larger thar..(e) ~ € ¢ with the so called -
chaos exponent=1/(a—w). For a random-bond perturba-  For au_<0, the minimization of the free energy with re-
tion [24,36,37, and for a temperature chanf#l], the expo-  spect tor_ yields
nent of the perturbation is in both cases1/2. For the
temperature change, this comes from the behavior of entropy ro~ w24 ith p = ﬂ (35)
fluctuationsAS~ L2, that was conjectured in Ref33] and - B T 4-a
numerically checked33,39. With the values obtained be- i )
fore (13), the chaos exponent thus reads in dimensiorfnd the corresponding scaling for the free energy reads

The generalization of the free ener¢f) reads

O=d=2: f_~ U9 with .= 20— (2-D)
1 2(4-d) 2D+ (2 -D)a
c= = 29 =
17w q (29) R (36)
that generalizes the well-known exponer{d=1)=6. Fi-  This solution is consistent as long &s> vy i.€., Since
nally, let us mention that more general perturbations with0<D <2,
other exponents have also been studied in Re{87,4Q,
and that the scaling form for the free-energy decorrelation _ 2D <a<A4. (37)

has been recently computed on a Berker latficH. 2-D
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The conditionau_< 0 shows that the physical interpreta- ] D[2D + (2 -D)«]
tion is very different according to the sign af For alla <0, F~L* with ©=e,== = 2-Da (43
as in the special case of uncorrelated disorder—d, the
solution obtained corresponds >0, i.e., to an unfavor- The subleading transverse length scale characterizing the
able region, where the global free energy is posifive-0.  confinement reads
On the contrary, forr> 0, the solution corresponds to <0,

l.e., to a favorable region where the global free energy is R, ~L™ with »,= M (44)
negativef_<0. 4D + (2 -D)
Finally, the use of Eq(16) for the random variable, yields,
B. Local Imry-Ma argument with the confinement term via the change of variable@O) to the following decay for
— . h ility distributi f the f F.:
The generalization of the Imry-Ma argume®) with the the probability distribution of the free energyF.
; 12
confinement entropy reads PE) ~ i(ﬂ)n S FIL
f T I+ b _ |D/2 al2 (38) FH_OC|F| L
: r2/(2-0) Hele T with
(A detailed analysis of the confinement entropy can be found _4D+(2-D)a 45
in Ref. [42].) For au, <0, the minimization with respect to = 2D : (45)
r, yields
D(2-D D. Global optimization for >0
r, ~ u;(z/D) U with v, = # (39) . P . @
4D + a(2-D) For >0, the previous picture completely changes, be-

cause the favorable regions are not the confined solutions
(+), but the swollen solution$-). As a consequence, the

f, ~ yiPM4D+2Dalj o, global optimization coincide with a solutiofr): the global
exponents for the transverse direction and the free energy are

The corresponding scaling for the total free energy reads

with thus directly given by
_ 2D _ D[2D +(2-D)«] 4-D
©=P 5"  wr2-Da = W I 49
This solution is consistent as long as<@, < v i-€.,
2D+ (2-D)a
2D wTw. =, (47)
-——<a. (41) 4-q

2-D
. N Finally, the use of Eq(16) for the random variable_ yields,
. The con.dltlonaqu'<0 shows thaf[ the physmal Interpreta- g the change of variablg86) to the following decay for
tion is again very different according to the sign @f For o probability distribution of the free enerdg~E_,
a<0, as in the special case of uncorrelated disorgerd,

the solution obtained correspondsug>0, i.e., to a favor- 1(EN"? _ wn 4-a
. ) . PE) = —|—| € ()"  \with - <
able region, where the global free energy is negative 0. £ |E|\ L® 7 2
On the contrary, forr> 0, the solution corresponds tig <0,
i.e., to an unfavorable region where the global free energy is (48)
positive f, > 0. We now briefly describe our results with their domain of

validity for the interesting cases of a polymBr=1 or of
interfacesd=1, before we compare with the results of other

C. Global optimization for &<0
methods.

For a<0, as in the polymer case with uncorrelated disor-
der, the optimal strategy will be to find a favorable region E. Results for the polymer with decaying correlations
L,~L with confinementR,~L". To find the best region with exponent —2< a<0
available, it will be worth to afford a global elastic cost of

LD2R2 of th q f itude of th . For a polymerD=1 with correlations described by the
Rg of the same order of magnitude of the energy gaing, ,,nent, (32) with —2< <0, the results are the same as
E, ~L*+ of the favorable region. The balance between thes

) . . for the polymer with uncorrelated disorder with the replace-
two terms yields that the global wandering will be mentd— —«, i.e., there is confinement with exponent
w,+2-D D(4-D)+(2-D)a

2 4D +(2-D)a Y i v a (49)

42
(42) with the corresponding exponents for the free energy and the
The global free energy gain will be wandering
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2+ di—-1)(3d,-5
w=1-2v,= a, (50) M:M, (56)
4+a Sdt_7
3+a 7d,-8-df
= 51 =
"Tata &) "7 -7 ol

with the tail exponent,=2+a/2. The domain of validity in  with the tail exponenty, =(5d,—7)/[2(d,—1)].
a is limited by a— -2, where the confinement exponent
reaches the free random walk exponent-1/2, and bya H. Results for interfaces with random-field disorder

0 where the optimization mechanism changes. i , i i
- P g For the special cases of interfaces of dimensienb< 2

_ _ in a space of total dimensidd+ 1=d,, the random-field dis-
F. Results for the. polymer with long-range correlations order that corresponds to the exponentais +1>0. The
with exponent 0<a <4 constraint (37) does not modify the original constraints

For a polymerD=1 with correlations described by the 0<<D <2, i.e., in terms of the total dimensiah of space
exponentx (32) with 0<«<4, there is no confinement, and
: . X 1<d,<3. (58)
the exponents are directly given by the exponénjscoming
from the direct dimensional analysis of the Hamiltonian ~ In this case, there is no confinement, and the exponents are
given by the exponent§-), i.e., they reduce to the well-
__3 (52) known exponents coming from the direct dimensional analy-

4-a sis of the Hamiltonian
5-d
2+ - t
w=2w-1=""2 (53) v=o (59)
4—-a
and the tail exponeny=(4-a)/2. The comparison with Eq. 1+d,
(51) shows that the exponents are continuougrad with ©= 3 (60)

the valuesy(a=0)=3/4 andw(a=0)=1/2. Special interest-

ing cases discussed in R¢l] are «=1, anda=2. In par-  With the left tail exponentp=3/2, that was also found in
ticular for the latter case=2 that corresponds effectively to Ref. [23].

the Larkin model, there exists an exact solution in terms of

replicas yielding the exact free-energy distributi@3]: our I. Agreement with Zhang replica scaling analysis

approach is in agreement with the exact results for the global The exponents presented in this section are in agreement
exponents=3/2, w=2 and for the exponenj=1 of the tail it zhang replica-scaling analysi&5]. It is thus useful to

of the free-energy distributiof43]. describe briefly the “dictionary” between the two methods.
Whereas the traditional approach with replicas consists in
G. Results for interfaces with random-bond disorder considering the limitn—0 with the possibility of replica

symmetry breaking, the replica-scaling analysis proposed by
r2hang [15] consists in analyzing the replicated problem
within a symmetric treatment of the replicas withn large

for instancen(n—1) is replaced by?]. The leading orders in
(L,n) of the moments are then interpreted as coming from
the tail of the probability distribution of the free energy. In
Zhang analysis, the cage<0 corresponds to an attraction

For the special cases of interfaces of internal dimensio
0<D<2 in a space of total dimensio+1=d, the
random-bond disorder corresponds to uncorrelated disord
in thed=1 transverse direction, i.e., the effective exponent i
a=-d=-1<0. The constrain{41) leads to the domain of
validity 2/3<D <2, i.e., in terms of the total dimensiah

of space between replicas and leads to a bound state, whereas the case
a>0 corresponds to a repulsion between replicas with no
3 <6<3. (54)  pound state. So the presence of a bound state for replicas
corresponds in our approach to the presence of a confinement
The confinement exponent reads tube. In conclusion, for those who prefer to think in real

(d - 1)(3—-d) space than in replica space, our approach provides an equiva-
e A i (55)  lent self-contained description in real space; and for those

5d, -7 who prefer to think in replica space, we hope that the trans-
lation in real space is also interesting, and can perhaps be
useful in other disordered models.

v, =

Note that it vanishes in the limith— 3, because the free
exponent vsee also vanishes in this limit of a two-
dimensional surfacB — 2 and is replaced by logarithms, the
physical meaning being that the confinement is not a big
constraint anymorg42]. The corresponding exponents for  Within the field theoretical framework, the correctness of
the free energy and wandering read the direct dimensional Imry-Ma analysis for the random-field

J. Comparison with other methods
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disorder =1 was supported by a functional RG analysisas Imry-Ma favorable tubes, where the polymer remains con-
[18], because the large distance behavior of the correlationined, and it is this confinement in an Imry-Ma favorable
are not renormalized, whereas for random-bond disoader tube that translates into a bound state for replicas in the
=-1, there are nontrivial renormalization of the exponentgeplica-scaling analysigl5].

[18]. So there should be a critical valug below which the In conclusion, we hope that our approach via simple scal-
direct dimensional analysis does not give the correct expoing arguments in real space gives a clear insight into the
nents. It has been argued in various RG mettdds-21,44  strong disorder phases in low dimensions, and a complemen-
that(i) below the critical valuey., the wandering exponemt  tary point of view with respect to the other methods.

sticks to the random-bond valugg and would thus be “su-

peruniversal’(ii) the critical valueq, is strictly negative. ACKNOWLEDGMENT

However, since the argument by FisHé®8] that the long-

range correlations of the disorder are not renormalized, natu- It is a pleasure to thank Bernard Derrida for useful com-
rally stops to apply aw=0, it seems to us that from this ments.

point of view, the simplest scenario is that the true critical

value is actuallya;=0, in agreement with the prediction of  \ppENp|X A: INITIAL DISORDER DISTRIBUTIONS

the r_epllca-scallng analysi45] a_nd with our analy5|_s \_N|th_ WITH ALGEBRAIC TAILS

confinement. Moreover, we believe that our description in-

volving a confinement mechanism suggests that a more ap- For the lattice uncorrelated models, where each link has
propriate field theoretical description in the case of transan energyV(i,x) drawn with some symmetric laviP(V)
verse decaying correlatiorns< 0 should perhaps include the =P(-V), the question of the universality with respect to the
presence of two different important transverse length scalesorm of the initial probability distributiorP(V) has attracted
and should perhaps involve instantons calculations or othej |ot of interesf 1], because it appeared that the presence of

nonperturbative tools to describe the confinement. long tails in the microscopic disorder

Finally, we should mention that the various alternative
predictions[15,44,45 for the exponents in the domain<0 P(V) = 1 (A1)
have been tested via numerical simulations on kinetic rough- Voo | V| 1HE

ening with various conclusiongl6,47. We believe that our
approach, that explains the meaning of Zhang replica—scaliré‘%as able to change the exponefd8-5(, as well as the

exponents in physical space strongly suggests that these _orphology of the associated uIt.rametric tree structurg qf the
ponents are indeed the correct ones. locally optimal paths[51], even if the variance was finite

n>2.

V. CONCLUSION 1. The strategy of finding the best site energy at zero

In this paper, we have analyzed via Imry-Ma energy/ temperature

entropy arguments the strong disorder phases that _exist i For the disordefAl), the heuristic argumerj#8,5q that
low dimensions at all nonzero temperatures for directethas peen proposed to explain these dependencgscion-
polymers and interfaces in random media. Within the field ofsjsts in the balance between the maximal site endtgy,

disordered systems, the originality of random manifolds is=(|.R¢)2~ drawn in the volum&LRY) and the global elastic
that they have some freedom to “choose” the disorder varignergyR2/L, that yields the exponent

ables they see in a given sample, in contrast with spin sys-

tems for instance that cannot avoid any disorder variables. elastic, ~_ M+1
Our main result is that they can use this freedom to follow Vvmay (1) = 2u—d
two qualitatively different strategiegi) for disorder with . o
decaying transverse correlations<0, the optimal strategy 1hiS exponent corresponds to the strategy of finding the
consists in being confined in a wandering tube, i.e., there ar@@ximal site energy and is usually considered as a lower
two different transverse scales that are important, namely, th@ound[50] for the true exponeni(u). For instance ird=1,
wandering scale and the confinement scéile;for disorder  this exponent is bigger than the valugy,s&2/3 for u=5,

with long-range transverse correlatioas>0, the optimal Which means that, at least fpr=5, the true exponent(x)
strategy is to be swollen, i.e., there is only one importantiS Not the usual oneg,,ss=2/3. There has been a large num-
transverse scale, and the exponents are given by a simpher of numerical studies on the true exponet), either on
dimensional analysis of the original Hamiltonian. For thethe directed polymer problem or in corresponding growth
general case of a manifold of internal dimensidin a space models: it is usually believeil] that the exponentA2) is

of total dimensiorD+d in the presence of transverse corre- not the exact ong48,50 and in particular that the associated
lations of exponenty, our results for exponents agree with critical valueu (d=1)=5 in d=1 is too low[52] and should
Zhang replica-scaling analysfd5]. Our method thus de- be replaced by at leagt.(d=1)~7, even if it has been also
scribes the same physics, but in real space instead of being argued that these numerical conclusions were due to cross-
replica space, and this allows to make the link with the scalover effects and that the expondAt?) was exac{53].

ing droplet approach: the states at finite temperatures of the From our point of view, it is not very clear why the ex-
scaling droplet theory33,34 are interpreted in our approach ponent(A2) should describe the exponents at zero tempera-

(A2)
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ture of _the lattice models thgt are measured in the numerical U= S Mipx(i)]. . Miex()Da  (A9)
simulations. Indeed, for lattice models at zero temperature,
there is no elastic energy, since a path is either allowed or ) )
forbidden. It is thus useful to reconsider in this context the!S then given by the term of Ord‘Wk>A_' corresponding to
Strategy of f|nd|ng the maximal site energynax among a C0|r!(?|dent |nd|CeSj_=|2: o=l and COIhCI_dII’]g tran&_‘,versal
number of orderL'* of independent sites that can be POSitionsx; =...=x;. If one assumes a uniform confinement
reached for a path of length The maximal value is thus of in transverse directions within a tube of radiuswe thus
orderVp.~ L% and since the distribution of its position obtain
is uniform, it reads in terms of the longitudinal coordinate

iy ik

. X i ) B Al
and the transverse distancén continuum notations (Ub AA:xA M—r T (A10)
Hlor <1< . .

pL(l,r) ~ % (A3) i.e., the prefactoc(l,r) of the tail (A7) scales as
I
As a consequence, the probability distribution of the trans- c(l,r) ~ D (A11)

verse distance of the best sité/,,,, takes the scaling form
L a1 On the other hand, the largest contributionl iof the mo-
(1) :f dip, (1,) ~ }(L) (1 _L) (Ad) ments(A9) with evenk (odd moments vanish by symmetry
P 0 Pt L\L L)’ comes from the term corresponding (to/2) pairs of coin-
ciding indices, leading to
i.e., the exponent corresponding to the strategy of finding the | \K2
best site energy Is <Uk>AI2 (<V2>E> ) (A12)
(lattice) () = 1 A5 -
1 may (4.0 (A% The natural rescaling appropriate for this term corresponds as

tice has to come from some cooperative effect of a largd3@ussian caseb)

number of subleading best sites. In the following, we will not I

discuss the zero temperature anymore, but the finite tempera- U=u \/:d

ture case, and we will try to describe the cooperative effects r

by reconsidering our previous Imry-Ma arguments to Segyoyever, the rescaled variablewill now present the fol-

what changes are necessary in the presence of algebraic tai@wing algebraic tai(A7) and (A11)

So we first need to consider the random energy that can be

gained in a tube. (Ir 91w
T

[u[—0e

(A13)

(A14)

2. Distribution of the energy U of a path of length | in a tube

. The presence of a nontrivial radiusthus generalizes the
of radius r

special case ~ 1 corresponding to the classical problem of
Let us consider the random energy the sumU of | independent variables:
| (i) For u>2, the weight(Ir9)1=»/2 of the tail of the re-
. scaled variablei=U/1 vanishes in the limit—, i.e., there
U= Izl VIix(@)] (A6) is a generalized central limit theorem describing the limit law
h of the rescaled variabla as soon as the variance is finite.
of a path of |engtH in a tube of radius in dimensionql However, since the pOIymer will try to find the best tube
+d). It is clear that its moments diverge far>u as the available, the presence of the algebraic tail can induce a
moments of the initial law(Al). The tail of its probability ~change in global exponents as we will see.

distribution will thus present the same power-law decay (it) For u<2, the weight of the tail in EqA14) is a
now positive power of: the variableu is not appropriate
c(l,r) anymore, and the new appropriate rescaled varialdethen
P(U)‘U|= ER (A7) defined by Eqs(A7) and(A1l)
U =pLVeRdEmlk, (A15)

where the scaling of the prefactof,r) with respect tdl,r)
can be estimated as follows. Let us introduce temporarily &0 that the limit probability distribution of presents the tail
large cutoffA in the original distribution(Al) to regularize 1

the diverging momentk> u: Q) = ||_l+” (A16)
o] |U
ky _ Ak-u
v >AA_,OOA ' (A8) Since the exponent of the transverse sddli Eq. (A15)
changes of sign gt=1, we will obtain a qualitative change
The largest divergence in the cutdffof the moment at u=1.
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3. Local Imry-Ma arguments gions. The free energy of a typical regiof_,r_) with the
In this section, we discuss the “local” Imry-Ma arguments €1astic term(6) then becomes
in the different caseg>2, 1<u<2 and finally O< u<1. r2
f~T o+ p_| M AL=1, (A22)

a. Local Imry-Ma arguments foru>2
For an unfavorable regiom_>0, the minimization off_

For u>2, the typical energy gained in a tube is still de with respect ter_. yields

fined in terms of the rescaled variahle(A13) and (A14),
and thus the exponeniv,,v,) (10) and (11) for typical (2l ) s u+1
favorable regions anéw_,v_) (7) and(8) for typical unfa- r_~ p/IE DA - ity (u) = 2+dp-d
vorable regions are unchanged. "

(A23)
b. Local Imry-Ma arguments forl<u<?2 The corresponding free energy reads
For <2, the new appropriate rescaled variablevis B _ 2+d-du
(A15), and thus the typical energy associated to a tube is f-~ o2 with o (u) = 2+du-d

different from the Gaussian case. The Imry-Ma arguments
for favorable and unfavorable regions will thus yield differ- (A24)

ent tYpAC""'IeXPO’}eEtS- e ocal favorable redi For 0<d<2, this analysis is valid for  u<2: the
(i) Analysis of the exponents in typical favora ereglons'roughness exponent varies betweerfu—1)—1 and its

The tfrtee er;ertgﬁ]y ofba typical regidh, ,r,) with the confine- usual valuey_(u— 2)— 3/(4+d), and the free-energy expo-
ment term(9) then becomes nent varies betweerw_(u—1)—1 and its usual value
w_(u—2)—(2-d)/(4+d). In particular, in dimensionl=1,

|+ U, dl(1/p)-1
f ~ Tr_z — v P, (A17)  the exponents read
:
For a favoraple regiow, >0, the minimization off, with v (u,d=1)= ik ' (A25)
respect tar, yields 3u-1
@l ) Y 3-
ry~uv; | with  v,(u) 2—durd o(wd=1)= - _Ml_ (A26)
(A18)
The corresponding free-energy reads ¢. Local Imry-Ma argument for0< m<1
f, ~ = 2D 0s)  \ith () = 2+d-du For 0<pu<1, the exponent of the transverse scRlén
* * * A -du+d’ Eqg. (A15) is positive. As a consequence, exactly as in the
(A19) case of long-range transverse correlation, the favorable re-

gions do not correspond to confined solutions, but to swollen
For 0<d< 2, this analysis is valid for £ ©<2: the con-  solutions. The free-energy of a regidn,r_) with the elastic

finement exponent varies between(u—1)—0 and its term(6) has now to be replaced by

usual valuev,(u—2)— 1/(4-d), and the free-energy expo- )

nent varies betweenvw,(u—1)—1 and its usual value f~ Tr__ — | Yy d@/p-1] (A27)

w(u—2)—(2-d)/(4-d). In particular, in dimension=1, -

the exponents read For a favorable region_< 0, the minimization with respect

u-1 to r_ yields
V+(Iu“!d = 1) = Tla (AZO) 1
m [+ u-dljr_() _ Mt
r_~uo# pAIW with vo(u) =
v v_(u) 2+du-d
3 _
o, d=1) = +‘i . (A21) (A28)
o
_and the corresponding free-energy reads
For d=2, these exponents are expected to be valid as
long as the confinement exponegt(,u) is positive and b2l o) it () = 2+d-du
smaller than the free value 1/2, i.e., fjr<1+2/d. For - - - - +du-d

instance, in transverse dimensida 2, the validity domain is (A29)

1<u<2, whereas ind=3 it is 1<u<<5/3. Equivalently,

for fixed w in the interval < u <2, the exponents are valid In particular, in the limitu— 1, the free-energy exponent

ford<2/(u-1). w_(u—17)=1 is in continuity with thew,(u— 1")=1, Eq.
(i) Analysis of the exponents in typical unfavorable re- (A19).
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4. Global optimization for the full polymer 2(1+dv) d?
: o pe(d) = —————=2+d~-—, (A36)
In the presence of long tails, the global optimization for (1+dv,) 2

the full polymer consists in looking for the confinement scale . . -
Re~L"# and the global wandering scaRs~L"® that where the Gaussian exponents are recovered. This critical

> L . value varies betweep.(d—0)—2 and u.(d—2)—2, and
minimize the global free energy containing three contribu is maximal ford=1 with the valueu,(d=1)=5/2. For in-

tions stance, in dimensiod=1, the exponentgA34),
RG . L R?;) 1
F R)=T—+T=-U L,RgN=—= /. =1)=——
L(Rs,R9) L = max( S Rds v(u,d=1) 1 (A37)
(A30)
d=1=£"2 (A38)
The first termRé/L represents the global elastic cost for the v, d=1)= w—1

diffusive tube. The second terh RE represents the confine- : _ N
ment entropy cost. The third tertd,., represents the best &€ thus expected to be valid fms?,u\,uc(d—l)—S/_Z.

energy among\ independent variables, whereU repre- Let us now discuss what happens far< ug(d)=d+1.
sents the random energy associated to a {lhRy). Using Below this value, the confinement exponent would become
the form (A7) and (A11) of the tail of its probability distri- negative, which is unphysical, and thus the confinement ex-

bution, we thus obtain the following scaling: ponent will stick to its minimal value
g vdu < pus(d)=d+1]=0 (A39)
UmaX<L,RS; N= %) ~ [o(L,RIN]Y~ ~ R(LRE) Ve, corresponding to an extreme confinement. In this regime, the
S

confinement entropy of ordéris subleading with respect to
(A31) the elastic entropy and the disorder energy in @&@0). The
balance between these two terms then coincides with the
This result shows why the introduction of two transverseestimation(A2) coming from the single best site strategy
scales(Rg, Rg) is actually always better to gain energy than

the swollen solution that involves only one sc&g, whose ,,<_ <p<pud)=d+ 1) - V?\'/afﬁi;g(u) _mtl . (A40)
free energy reads 2 2u—d
Ré Note that this wandering exponent is then always greater
pswolle =TS _ U, (L.Rs), A32 than one. As a consequence, on a lattice, the wandering ex-
- Re) L ol Re) (A32) ponent will stick to its maximal value=1,
VU < pg(d) =d+1]=1. (A41)

where the typical value scales bl,(L,Rg) ~ R&(LRS)Y~

for <2 (A15). The comparison with EqA31) is thus im-

mediate: both have the same fac(hR%)l’“ presenting the ) )

scale of the best sites in the volurfieRS), but the factor of 5. Discussion

the density in the transverse directions of the tube is much In this appendix, we have shown how the presence of

better in a confined tub&" than for the swollen solution algebraic tails in the initial distribution could be taken into
d. account in our approach to yield a change in the global ex-

The optimization of Eq(A30) with respect to(Rs, Rg) ponents even in the cases where the variance is finite.

yields the following exponents: However, even if our results are on this point qualitatively
correct, the status of the quantitative results is not clear. In-
1+u(1-d) deed, in dimension=1, we have obtain aa varies for the
()= S————, (A33)  wandering exponent at nonzero temperature
(2-dp-d
1
r(d=1,2< u<5/2)=——:, (A42)
(= 2@+ D (A34) wol
T - du-d .
ot
These exponents are valid in transverse dimension d=1,12<p<2)= 2n-1 =1, (A43)

0<d<2 in the domain
ie.,
ps(d) =d+ 1< p < pudld), (A35) Vlattice(lu <2)=1,
where the inferior valug.(d)=d+1 corresponds to the point where the change that takes placeuat2 with the corre-
where the confinement exponent vanishegd+1)=0, sponding value/(u=2)=1, between a phase with a positive
whereas the superior value corresponds the critical value confinement exponent(u>2,d=1)>0 and a phase with a
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vanishing confinement exponenf(ux<2,d=1)=0. The re- be governed by the extremal statistics of the initial distribu-
sults(A43) for > 2 are far from the exponents measured attion [54], and thus to simplify the discussion, we consider
T=0 in numerical simulations: in particular, the critical value the specific case of binary disordé(r) = +v,. The probabil-
we have obtained..(d=1)=5/2 isvery far from the lattice ity P,(R) to have a tube of radiuR containing only attrac-
numerical estimationu.(d=1,T=0)~7 [52,1]. Is there a tive lines decays exponentially as in the standard Lifshitz
problem in this case between the zero-temperature best paiigument
and our approach at nonzero temperature based on the con- _rd
finement entropy? Or is our Imry-Ma approach too simple to P.(R) ~e™. (B1)
describe correctly the algebraic tails? For instance, it may bghe best favorable tube of radi amongN ~ R%/Rds inde-
that the smaller scales have to be taken into account, in coipendent tubes has for radil&~ (In N)Xd. This best tube
trast with the Gaussian case where the optimization on thg|iows to reach the best total energy availabigls; whereas
biggest scale fixes the exponents. the confinement entropic cost and the elastic cost are, respec-
tively, TL/R% and TRE/L. The best solution is thus the fol-
lowing at leading order(i) the confinement radius of the best
favorable tube grows logarithmicallRs~ (In L) (ii) the
Following the suggestion of an anonymous referee, wearansverse distance between the origin and the best tube
now briefly discuss the confinement properties of a directedjrows almost linearlyRg~[L/(In L)¥?]; (iii) the difference
polymer at nonzero temperature in the presence of columnajetween the free-energy and its extensive part decays as
disorder, i.e., when the random potentf, r(s)] becomes a  AF ~[L/(In L)?d]. The result for the free-energy is in agree-
function of spacev(r) only (see Refs[1,54 and references ment with Ref.[54], whereas the exponent for the logarith-
therein, for the physical motivations and the results of vari-mic factor in the total transverse displacemBatis different

APPENDIX B: CASE OF COLUMNAR DISORDER

ous approachgsThe case of columnar disorder is known to from Ref. [54].
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